1,414
Views
112
CrossRef citations to date
0
Altmetric
Review

Cytochrome P450 reaction-phenotyping: an industrial perspective

, PhD, , PhD, , PhD & , PhD
Pages 667-687 | Published online: 19 Oct 2007

Bibliography

  • LIN JH, LU AY: Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. (1997) 49(4):403-449.
  • RODRIGUES AD, RUSHMORE TH: Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr. Drug Metab. (2002) 3(3):289-309.
  • HONIG PK, WORTHAM DC, ZAMANI K et al.: Terfenadine–ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA (1993) 269(12):1513-1518.
  • BACKMAN JT, KYRKLUND C, NEUVONEN M et al.: Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin. Pharmacol. Ther. (2002) 72(6):685-691.
  • NIEMI M, BACKMAN JT, NEUVONEN M et al.: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia (2003) 46(3):347-351.
  • ARRINGTON-SANDERS R, HUTTON N, SIBERRY GK: Ritonavir–fluticasone interaction causing Cushing syndrome in HIV-infected children and adolescents. Pediatr. Infect. Dis. J. (2006) 25(11):1044-1048.
  • BACKMAN JT, KARJALAINEN MJ, NEUVONEN M et al.: Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br. J. Clin. Pharmacol. (2006) 62(3):345-357.
  • RODRIGUES AD, LIN JH: Screening of drug candidates for their drug–drug interaction potential. Curr. Opin. Chem. Biol. (2001) 5(4):396-401.
  • MIZUNO N, NIWA T, YOTSUMOTO Y et al.: Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. (2003) 55(3):425-461.
  • RODRIGUES AD: Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem. Pharmacol. (1999) 57(5):465-480.
  • LU AY, WANG RW, LIN JH: Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification. Drug Metab. Dispos. (2003) 31(4):345-350.
  • WILLIAMS JA, HYLAND R, JONES BC et al.: Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. (2004) 32(11):1201-1208.
  • WILLIAMS JA, HURST SI, BAUMAN J et al.: Reaction phenotyping in drug discovery: moving forward with confidence? Curr. Drug Metab. (2003) 4(6):527-534.
  • EMOTO C, MURASE S, IWASAKI K: Approach to the prediction of the contribution of major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. Xenobiotica (2006) 36(8):671-683.
  • RENDIC S, DI CARLO FJ: Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. (1997) 29(1-2):413-580.
  • GUENGERICH FP: Cytochromes P450, drugs, and diseases. Mol. Interv. (2003) 3(4):194-204.
  • SANDERSON S, EMERY J, HIGGINS J: CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet. Med. (2005) 7(2):97-104.
  • NAGAR S, BLANCHARD RL: Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab. Rev. (2006) 38(3):393-409.
  • SHOU M, MEI Q, ETTORE MW Jr et al.: Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives. Biochem. J. (1999) 340(Part 3):845-853.
  • KENWORTHY KE, CLARKE SE, ANDREWS J et al.: Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab. Dispos. (2001) 29(12):1644-1651.
  • XIE HG, WOOD AJ, KIM RB et al.: Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics (2004) 5(3):243-272.
  • PAINE MF, HART HL, LUDINGTON SS et al.: The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. (2006) 34(5):880-886.
  • DALY AK: Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. (2006) 45(1):13-31.
  • SHIMADA T, YAMAZAKI H, MIMURA M et al.: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. (1994) 270(1):414-423.
  • SNAWDER JE, LIPSCOMB JC: Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul. Toxicol. Pharmacol. (2000) 32(2):200-209.
  • VENKATAKRISHNAN K, VON MOLTKE LL, COURT MH et al.: Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab. Dispos. (2000) 28(12):1493-1504.
  • ROWLAND YEO K, ROSTAMI-HODJEGAN A, TUCKER GT: Abundance of cytochrome P450 in human liver: a meta-analysis. Br. J. Clin. Pharmacol. (2003) 57(5):687.
  • MATSUMOTO S, HIRAMA T, MATSUBARA T et al.: Involvement of CYP2J2 on the intestinal first-pass metabolism of antihistamine drug, astemizole. Drug Metab. Dispos. (2002) 30(11):1240-1245.
  • HASHIZUME T, IMAOKA S, MISE M et al.: Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J. Pharmacol. Exp. Ther. (2002) 300(1):298-304.
  • MATSUMOTO S, HIRAMA T, KIM HJ et al.: In vitro inhibition of human small intestinal and liver microsomal astemizole O-demethylation: different contribution of CYP2J2 in the small intestine and liver. Xenobiotica (2003) 33(6):615-623.
  • DELOZIER TC, KISSLING GE, COULTER SJ et al.: Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. (2007) 35(4):682-688.
  • DING X, KAMINSKY LS: Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. (2003) 43:149-173.
  • HEDLUND E, GUSTAFSSON JA, WARNER M: Cytochrome P450 in the brain: a review. Curr. Drug Metab. (2001) 2(3):245-263.
  • MIKSYS SL, TYNDALE RF: Drug-metabolizing cytochrome P450s in the brain. J. Psychiatry Neurosci. (2002) 27(6):406-415.
  • INGELMAN-SUNDBERG M: Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch. Pharmacol. (2004) 369(1):89-104.
  • INGELMAN-SUNDBERG M: Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. (2005) 5(1):6-13.
  • DESTA Z, ZHAO X, SHIN JG et al.: Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. (2002) 41(12):913-958.
  • KIRCHHEINER J, ROOTS I, GOLDAMMER M et al.: Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet. (2005) 44(12):1209-1225.
  • RODRIGUES AD: Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab. Dispos. (2005) 33(11):1567-1575.
  • LEE CR, GOLDSTEIN JA, PIEPER JA: Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics (2002) 12(3):251-263.
  • KIRCHHEINER J, THOMAS S, BAUER S et al.: Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin. Pharmacol. Ther. (2006) 80(6):657-667.
  • NIEMI M, LEATHART JB, NEUVONEN M et al.: Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin. Pharmacol. Ther. (2003) 74(4):380-387.
  • HENNINGSSON A, MARSH S, LOOS WJ et al.: Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res. (2005) 11(22):8097-8104.
  • WANDEL C, WITTE JS, HALL JM et al.: CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin. Pharmacol. Ther. (2000) 68(1):82-91.
  • HE P, COURT MH, GREENBLATT DJ et al.: Genotype–phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin. Pharmacol. Ther. (2005) 77(5):373-387.
  • KRISHNA DR, SHEKAR MS: Cytochrome P450 3A: genetic polymorphisms and inter-ethnic differences. Methods Find. Exp. Clin. Pharmacol. (2005) 27(8):559-567.
  • ITO K, IWATSUBO T, KANAMITSU S et al.: Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol. Rev. (1998) 50(3):387-412.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K et al.: The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J. Pharmacol. Exp. Ther. (2006) 316(1):336-348.
  • BROWN HS, ITO K, GALETIN A et al.: Prediction of in vivo drug–drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br. J. Clin. Pharmacol. (2005) 60(5):508-518.
  • CHIEN JY, LUCKSIRI A, ERNEST CS II et al.: Stochastic prediction of CYP3A-mediated inhibition of midazolam clearance by ketoconazole. Drug Metab. Dispos. (2006) 34(7):1208-1219.
  • BACHMANN KA: Inhibition constants, inhibitor concentrations and the prediction of inhibitory drug–drug interactions: pitfalls, progress and promise. Curr. Drug Metab. (2006) 7(1):1-14.
  • ROSTAMI-HODJEGAN A, TUCKER GT: Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat. Rev. Drug Discov. (2007) 6(2):140-148.
  • WANG YH, JONES DR, HALL SD: Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab. Dispos. (2004) 32(2):259-266.
  • ROWLAND M, MATIN SB: Kinetics of drug–drug interactions. J. Pharmacokinet. Biopharm. (1973) 1:553-576.
  • LAINE K, ANTTILA M, HELMINEN A et al.: Dose linearity study of selegiline pharmacokinetics after oral administration: evidence for strong drug interaction with female sex steroids. Br. J. Clin. Pharmacol. (1999) 47(3):249-254.
  • THUMMEL KE, SHEN DD: The Role of the Gut Mucosa in Metabolically Based Drug–Drug Interactions. Rodrigues AD (Ed.), Marcel Dekker, New York, USA (2002).
  • TUCKER GT, HOUSTON JB, HUANG SM: Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential-toward a consensus. Clin. Pharmacol. Ther. (2001) 70(2):103-114.
  • BJORNSSON TD, CALLAGHAN JT, EINOLF HJ et al.: The conduct of in vitro and in vivo drug–drug interaction studies: a pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. (2003) 31(7):815-832.
  • ITO K, HALLIFAX D, OBACH RS et al.: Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug–drug interactions: CYP2D6 paradigm. Drug Metab. Dispos. (2005) 33(6):837-844.
  • NIEMI M, BACKMAN JT, JUNTTI-PATINEN L et al.: Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide. Br. J. Clin. Pharmacol. (2005) 60(2):208-217.
  • NIEMI M, BACKMAN JT, KAJOSAARI LI et al.: Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. (2005) 77(6):468-478.
  • NOE J, PORTMANN R, BRUN ME et al.: Substrate dependent drug–drug interactions between gemfibrozil, fluvastatin and other Oatp substrates on Oatp1b1, Oatp2b1 and Oatp1b3. Drug Metab. Dispos. (2007).
  • VAN HEININGEN PN, HATORP V, KRAMER NIELSEN K et al.: Absorption, metabolism and excretion of a single oral dose of (14)C-repaglinide during repaglinide multiple dosing. Eur. J. Clin. Pharmacol. (1999) 55(7):521-525.
  • WEAVER ML, ORWIG BA, RODRIGUEZ LC et al.: Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab. Dispos. (2001) 29(4 Part 1):415-421.
  • BIDSTRUP TB, BJORNSDOTTIR I, SIDELMANN UG et al.: CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol. (2003) 56(3):305-314.
  • KIRCHHEINER J, MEINEKE I, MULLER G et al.: Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin. Pharmacokinet. (2004) 43(4):267-278.
  • ITO K, CHIBA K, HORIKAWA M et al.: Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm. Sci. (2002) 4(4):E25.
  • KANAMITSU S, ITO K, SUGIYAMA Y: Quantitative prediction of in vivo drug–drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm. Res. (2000) 17(3):336-343.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K: Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug–drug interactions. Drug Metab. Dispos. (2007) 35(2):246-255.
  • GALETIN A, BURT H, GIBBONS L et al.: Prediction of time-dependent CYP3A4 drug–drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab. Dispos. (2006) 34(1):166-175.
  • TIRONA RG, KIM RB: Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci. (2005) 94(6):1169-1186.
  • GORSKI JC, VANNAPRASAHT S, HAMMAN MA et al.: The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin. Pharmacol. Ther. (2003) 74(3):275-287.
  • SMITH DA: Induction and drug development. Eur. J. Pharm. Sci. (2000) 11(3):185-189.
  • LIN JH: CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm. Res. (2006) 23(6):1089-1116.
  • CHUNG E, NAFZIGER AN, KAZIERAD DJ et al.: Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin. Pharmacol. Ther. (2006) 79(4):350-361.
  • SINZ M, KIM S, ZHU Z et al.: Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab. (2006) 7(4):375-388.
  • RIPP SL, MILLS JB, FAHMI OA et al.: Use of immortalized human hepatocytes to predict the magnitude of clinical drug–drug interactions caused by CYP3A4 induction. Drug Metab. Dispos. (2006) 34(10):1742-1748.
  • HEWITT NJ, LECHON MJ, HOUSTON JB et al.: Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab. Rev. (2007) 39(1):159-234.
  • SEGEL I: Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady State Enzyme Systems. Wiley Interscience, New York, USA (1993).
  • KATO M, CHIBA K, HORIKAWA M et al.: The quantitative prediction of in vivo enzyme-induction caused by drug exposure from in vitro information on human hepatocytes. Drug Metab. Pharmacokinet. (2005) 20(4):236-243.
  • OBACH RS: Inhibition of human cytochrome P450 enzymes by constituents of St John's Wort, an herbal preparation used in the treatment of depression. J. Pharmacol. Exp. Ther. (2000) 294(1):88-95.
  • ZHOU S, CHAN E, PAN SQ et al.: Pharmacokinetic interactions of drugs with St John's wort. J. Psychopharmacol. (2004) 18(2):262-276.
  • LUO G, GUENTHNER T, GAN LS, HUMPHREYS WG: CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr. Drug Metab. (2004) 5(6):483-505.
  • LEE LS, NAFZIGER AN, BERTINO JS Jr: Evaluation of inhibitory drug interactions during drug development: genetic polymorphisms must be considered. Clin. Pharmacol. Ther. (2005) 78(1):1-6.
  • COLLINS C, LEVY R, RAGUENEAU-MAJLESSI I et al.: Prediction of maximum exposure in poor metabolizers following inhibition of nonpolymorphic pathways. Curr. Drug Metab. (2006) 7(3):295-299.
  • HUANG SM, TEMPLE R, THROCKMORTON DC et al.: Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther. (2007) 81(2):298-304.
  • OBACH RS, WALSKY RL, VENKATAKRISHNAN K et al.: In vitro cytochrome P450 inhibition data and the prediction of drug–drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin. Pharmacol. Ther. (2005) 78(6):582-592.
  • KASSAHUN K, MCINTOSH IS, SHOU M et al.: Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor. Drug Metab. Dispos. (2001) 29(6):813-820.
  • MA B, SUBRAMANIAN R, SCHRAG ML et al.: Cytochrome P450 2C8 (CYP2C8)-mediated hydroxylation of an endothelin ETA receptor antagonist in human liver microsomes. Drug Metab. Dispos. (2004) 32(5):473-478.
  • MACHINIST JM, MAYER MD, ROBERTS EM et al.: Identification of the human liver cytochrome P450 enzymes involved in the in vitro metabolism of a novel 5-lipoxygenase inhibitor. Drug Metab. Dispos. (1998) 26(10):970-976.
  • MACHINIST JM, MAYER MD, SHET MS et al.: Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite, Abbott-66193. Drug Metab. Dispos. (1995) 23(10):1163-1174.
  • PEARCE RE, RODRIGUES AD, GOLDSTEIN JA et al.: Identification of the human P450 enzymes involved in lansoprazole metabolism. J. Pharmacol. Exp. Ther. (1996) 277(2):805-816.
  • RODRIGUES AD, KUKULKA MJ, ROBERTS EM et al.: [O-methyl 14C]naproxen O-demethylase activity in human liver microsomes: evidence for the involvement of cytochrome P4501A2 and P4502C9/10. Drug Metab. Dispos. (1996) 24(1):126-136.
  • RODRIGUES AD, ROBERTS EM, MULFORD DJ et al.: Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab. Dispos. (1997) 25(5):623-630.
  • TANG C, SHOU M, MEI Q et al.: Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J. Pharmacol. Exp. Ther. (2000) 293(2):453-459.
  • YUAN R, MADANI S, WEI XX et al.: Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos. (2002) 30(12):1311-1319.
  • SCHRAG ML, CUI D, RUSHMORE TH et al.: Sulfotransferase 1E1 is a low km isoform mediating the 3-O-sulfation of ethinyl estradiol. Drug Metab. Dispos. (2004) 32(11):1299-1303.
  • MINERS JO, KNIGHTS KM, HOUSTON JB et al.: In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem. Pharmacol. (2006) 71(11):1531-1539.
  • GELBOIN HV, KRAUSZ K: Monoclonal antibodies and multifunctional cytochrome P450: drug metabolism as paradigm. J. Clin. Pharmacol. (2006) 46(3):353-372.
  • KUMAR V, ROCK DA, WARREN CJ et al.: Enzyme source effects on CYP2C9 kinetics and inhibition. Drug Metab. Dispos. (2006) 34(11):1903-1908.
  • CHEN J, YANG XX, HUANG M et al.: Small interfering RNA-mediated silencing of cytochrome P450 3A4 gene. Drug Metab. Dispos. (2006) 34(9):1650-1657.
  • GONZALEZ FJ, YU AM: Cytochrome P450 and xenobiotic receptor humanized mice. Annu. Rev. Pharmacol. Toxicol. (2006) 46:41-64.
  • KATOH M, SAWADA T, SOENO Y et al.: In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. J. Pharm. Sci. (2007) 96(2):428-437.
  • MADAN A, USUKI E, BURTON LA et al.: In vitro Approaches for Studying the Inhibition of Drug-Metabolizing Enzymes and Identifying the Drug-Metabolizing Enzymes Responsible for the Metabolism of Drugs. Rodrigues AD (Ed.), Marcel Dekker, New York, USA (2002).
  • RAGHAVAN N, ZHANG D, ZHU M et al.: Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes. Drug Metab. Dispos. (2005) 33(2):203-208.
  • MCCONN DJ II, LIN YS, ALLEN K et al.: Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos. (2004) 32(10):1083-1091.
  • ALLQVIST A, MIURA J, BERTILSSON L et al.: Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur. J. Clin. Pharmacol. (2007) 63(2):173-179.
  • DENNISON JB, KULANTHAIVEL P, BARBUCH RJ et al.: Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab. Dispos. (2006) 34(8):1317-1327.
  • MA B, POLSKY-FISHER SL, VICKERS S et al.: Cytochrome P450 3A-dependent metabolism of a potent and selective {γ}-aminobutyric acid A{α}2/3 receptor agonist in vitro: involvement of cytochrome P450 3A5 displaying biphasic kinetics. Drug Metab. Dispos. (2007) 35(8):1301-1307.
  • DENNISON JB, JONES DR, RENBARGER JL et al.: Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J. Pharmacol. Exp. Ther. (2007) 321(2):553-563.
  • PROCTOR NJ, TUCKER GT, ROSTAMI-HODJEGAN A: Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica (2004) 34(2):151-178.
  • ZHANG D, WANG L, CHANDRASENA G et al.: Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab. Dispos. (2007) 35(1):139-149.
  • WANG L, ZHANG D, SWAMINATHAN A et al.: Glucuronidation as a major metabolic clearance pathway of 14C-labeled muraglitazar in humans: metabolic profiles in subjects with or without bile collection. Drug Metab. Dispos. (2006) 34(3):427-439.
  • ZHANG D, WANG L, RAGHAVAN N et al.: Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabolite profiling. Drug Metab. Dispos. (2007) 35(1):150-167.
  • WIENKERS LC: Problems associated with in vitro assessment of drug inhibition of CYP3A4 and other P-450 enzymes and its impact on drug discovery. J. Pharmacol. Toxicol. Methods (2001) 45(1):79-84.
  • LIN JH, PEARSON PG: Prediction of Metabolic Drug Interactions: Quantitative or Qualitative? Rodrigues AD (Ed.), Marcel Dekker, New York, USA (2002).
  • RODRIGUES A: Prioritization of clinical drug interaction studies using in vitro cytochrome P450 data: proposed refinement and expansion of the “rank order” approach. Drug Metab. Lett. (2007) 1:31-35.
  • DICKINSON GL, LENNARD MS, TUCKER GT et al.: The use of mechanistic DM-PK-PD modelling to assess the power of pharmacogenetic studies – CYP2C9 and warfarin as an example. Br. J. Clin. Pharmacol. (2007)
  • DICKINSON GL, REZAEE S, PROCTOR NJ et al.: Incorporating in vitro information on drug metabolism into clinical trial simulations to assess the effect of CYP2D6 polymorphism on pharmacokinetics and pharmacodynamics: dextromethorphan as a model application. J. Clin. Pharmacol. (2007) 47(2):175-186.
  • HAMBERG AK, DAHL ML, BARBAN M et al.: A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin. Pharmacol. Ther. (2007) 81(4):529-538.
  • BENET LZ, CUMMINS CL, WU CY: Transporter–enzyme interactions: implications for predicting drug–drug interactions from in vitro data. Curr. Drug Metab. (2003) 4(5):393-398.
  • HO RH, KIM RB: Transporters and drug therapy: implications for drug disposition and disease. Clin. Pharmacol. Ther. (2005) 78(3):260-277.
  • TSUJI A: Impact of transporter-mediated drug absorption, distribution, elimination and drug interactions in antimicrobial chemotherapy. J. Infect. Chemother. (2006) 12(5):241-250.
  • PACIFICI GM: Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int. J. Clin. Pharmacol. Ther. (2004) 42(9):488-495.
  • KUNZE KL, TRAGER WF: Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol. (1993) 6(5):649-656.
  • ZHANG W, KILICARSLAN T, TYNDALE RF et al.: Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab. Dispos. (2001) 29(6):897-902.
  • TURPEINEN M, NIEMINEN R, JUNTUNEN T et al.: Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro. Drug Metab. Dispos. (2004) 32(6):626-631.
  • WALSKY RL, OBACH RS, GAMAN EA et al.: Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab. Dispos. (2005) 33(3):413-418.
  • BALDWIN SJ, BLOOMER JC, SMITH GJ et al.: Ketoconazole and sulphaphenazole as the respective selective inhibitors of P4503A and 2C9. Xenobiotica (1995) 25(3):261-270.
  • SUZUKI H, KNELLER MB, HAINING RL et al.: (+)-N-3-Benzyl-nirvanol and (-)-N-3-benzyl-phenobarbital: new potent and selective in vitro inhibitors of CYP2C19. Drug Metab. Dispos. (2002) 30(3):235-239.
  • CAI X, WANG RW, EDOM RW et al.: Validation of (-)-N-3-benzyl-phenobarbital as a selective inhibitor of CYP2C19 in human liver microsomes. Drug Metab. Dispos. (2004) 32(6):584-586.
  • MURALIDHARAN G, HAWES EM, MCKAY G et al.: Quinidine but not quinine inhibits in man the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase. Eur. J. Clin. Pharmacol. (1991) 41(5):471-474.
  • CHANG TK, GONZALEZ FJ, WAXMAN DJ: Evaluation of triacetyloleandomycin, α-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch. Biochem. Biophys. (1994) 311(2):437-442.
  • YAMAZAKI H, SHIMADA T: Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6β-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab. Dispos. (1998) 26(11):1053-1057.
  • BOURRIE M, MEUNIER V, BERGER Y et al.: Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther. (1996) 277(1):321-332.
  • EAGLING VA, TJIA JF, BACK DJ: Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol. (1998) 45(2):107-114.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.