299
Views
43
CrossRef citations to date
0
Altmetric
Reviews

Screening TRPV1 antagonists for the treatment of pain: lessons learned over a decade

, , , &
Pages 159-180 | Published online: 02 Feb 2009

Bibliography

  • Campbell W, Nicholas M, Breivik H, et al. Clinical Pain Management Practice and Procedures. Oxford University Press, 2008
  • Decade of Pain Control and Research Available from: http://www.ampainsoc.org/decadeofpain [Cited 2008]
  • Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des 2008; In press
  • Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999;51:159-212
  • Knotkova H, Pappagallo M, Szallasi A. Capsaicin (TRPV1 agonist) therapy for pain relief – Farewell or revival? Clin J Pain 2008;24:142-54
  • Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-24
  • Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 2007;6:357-72
  • Migraine trials with SB-705498. Available from: http://clinicaltrials.gov/ct2/show/ NCT00269022?term=SB705498&rank=1 [Cited 2008]
  • Merck “pipeline” Available from: http://www.merck.com/finance/ pipeline.swf [Cited 2008]
  • Gavva NR, Treanor JJS, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008;136:202-10
  • Hayes P, Meadows HJ, Gunthorpe MJ, et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 2000;88:205-15
  • Moiseenkova-Bell VY, Stanciu LA, Serysheva II, et al. Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 2008;105:7451-5
  • Garcia-Sanz N, Fernandez-Carvajal A, Morenilla-Palao C, et al. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 2004;24:5307-14
  • Garcia-Sanz N, Valente P, Gomis A, et al. A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci 2007;27:11641-50
  • Latorre R, Brauchi S, Orta G, et al. Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium 2007;42:427-38
  • Gavva NR, Klionsky L, Qu YS, et al. Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 2004;279:20283-95
  • Tousova K, Vyklicky L, Susankova K, et al. Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol Cell Neurosci 2005;30:207-17
  • Brauchi S, Orta G, Salazar M, et al. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 2006;26:4835-40
  • Xu HX, Blair NT, Clapham DE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 2005;25:8924-37
  • Siemens J, Zhou S, Piskorowski R, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006;444:208-12
  • Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 2007;114:13-33
  • Klionsky L, Tamir R, Holzinger B, et al. A polyclonal antibody to the prepore loop of transient receptor potential vanilloid type 1 blocks channel activation. J Pharmacol Exp Ther 2006;319:192-8
  • Ohta T, Imagawa T, Ito S. Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1) – Tonic inhibitory regulation of extracellular sodium through the external protonation sites on TRPV1. J Biol Chem 2008;283:9377-87
  • Guo A, Vulchanova L, Wang J, et al. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X(3) purinoceptor and IB4 binding sites. Eur J Neurosci 1999;11:946-58
  • Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 2004;271:1814-9
  • Stein AT, Ufret-Vincenty CA, Hua L, et al. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 2006;128:509-22
  • Zhang XM, Huang JH, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 2005;24:4211-23
  • Hwang SW, Oh U. Hot channels in airways: pharmacology of the vanilloid receptor. Curr Opin Pharmacol 2002;2:235-42
  • Cesare P, Dekker LV, Sardini A, et al. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 1999;23:617-24
  • Schnizler K, Shutov LP, Van Kanegan MJ, et al. Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons. J Neurosci 2008;28:4904-17
  • Zhang X, Li L, McNaughton PA. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 2008;59:450-61
  • Jeske NA, Diogenes A, Ruparel NB, et al. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain 2008 [Epub ahead of print]
  • Coghlan VM, Perrino BA, Howard M, et al. Association of protein-kinase-α and protein-phosphatase-2b with a common anchoring rotein. Science 1995;267:108-11
  • Klauck TM, Faux MC, Labudda K, et al. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 1996;271:1589-92
  • Amadesi S, Cottrell GS, Divino L, et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C epsilon- and A-dependent mechanisms in rats and mice. J Physiol 2006;575:555-71
  • Ohta T, Ikemi Y, Murakami M, et al. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 2006;576:809-22
  • Kim BM, Lee SH, Shim WS, Oh U. Histamine-induced Ca2+ influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett 2004;361:159-62
  • Chuang HH, Prescott ED, Kong H, et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001;411:957-62
  • Prescott ED, Julius D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 2003;300:1284-8
  • Lukacs V, Thyagarajan B, Varnai P, et al. Dual regulation of TRPV1 by phosphoinositides. J Neurosci 2007;27:7070-80
  • Kim AY, Tang ZX, Liu Q, et al. Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 2008;133:475-85
  • Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000;408:985-90
  • Vellani V, Mapplebeck S, Moriondo A, et al. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 2001;534:813-25
  • Bhave G, Hu HJ, Glauner KS, et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 2003;100:12480-5
  • Numazaki M, Tominaga T, Toyooka H, Tominaga M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 2002;277:13375-8
  • Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 2004;279:25665-72
  • Constantin CE, Mair N, Sailer CA, et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 2008;28:5072-81
  • Sculptoreanu A, Aura Kullmann F, de Groat WC. Neurokinin 2 receptor-mediated activation of protein kinase C modulates capsaicin responses in DRG neurons from adult rats. Eur J Neurosci 2008;27:3171-81
  • Wang Y, Kedei N, Wang M, et al. Interaction between protein kinase C mu and the vanilloid receptor type 1. J Biol Chem 2004;279:53674-82
  • Vetter I, Wyse BD, Monteith GR, et al. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2006;2:22-9
  • Jung JY, Shin JS, Lee SY, et al. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 2004;279:7048-54
  • Mohapatra DP, Nau C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 2005;280:13424-32
  • Planells-Cases R, Ferrer-Montiel AV. TRP channel trafficking. In: Liedtke WB, editor, TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades: CRC Press 2006. p. 467
  • Jordt SE, Julius D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 2002;108:421-30
  • McIntyre P, McLatchie LM, Chambers A, et al. Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Brit J Pharmacol 2001;132:1084-94
  • Savidge J, Davis C, Shah K, et al. Cloning and functional characterization of the guinea pig vanilloid receptor 1. Neuropharmacol 2002;43:450-6
  • Lehto SG, Tamir R, Deng H, et al. Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4- (tri fluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J Pharmacol Exp Ther 2008;326:218-29
  • Szolcsanyi J, Szallasi A, Szallasi Z, et al. Resiniferatoxin - an ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J Pharmacol Exp Ther 1990;255:923-8
  • Szallasi A, Nilsson S, Farkas-Szallasi T, et al. Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 1995;703:175-83
  • Diatchenko L, Slade GD, Nackley AG, et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Gen 2005;14:135-43
  • Sery O, Hrazdilova O, Matalova E, Sevcik P. Pain research update from a genetic point of view. Pain Pract 2005;5:341-8
  • Lotsch J, Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med 2005;11:82-9
  • Kim H, Dionne RA. TRP polymorphism: implications for theranostics. In: Szallasi A, editor, TRP Channels in Health and Disease: Implications for Diagnosis and Therapy: Nova Publ.; In press
  • Kim H, Mittal DP, Iadarola MJ, Dionne RA. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J Med Genet 2006;43:e40
  • Goldberg YP, MacFarlane J, MacDonald ML, et al. Loss-of-function mutations in the Na(v)1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 2007;71:311-9
  • Oertel B, Lotsch J. Genetic mutations that prevent pain: implications for future pain medication. Pharmacogenomics 2008;9:179-94
  • Xu H, Tian W, Fu Y, et al. Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene. Am J Physiol Renal Physiol 2007;293:F1865-76
  • Kim H, Neubert JK, San Miguel A, et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 2004;109:488-96
  • Razavi R, Chan Y, Afifiyan FN, et al. TRPV1(+) sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 2006;127:1123-35
  • Gharat LA, Szallasi A. Advances in the design and therapeutic use of capsaicin receptor TRPV1 agonists and antagonists. Exp Opin Ther Patents 2008;18:159-209
  • Walpole CSJ, Bevan S, Bovermann G, et al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 1994;37:1942-54
  • Bevan S, Hothi S, Hughes G, et al. Capsazepine - a competitive antagonist of the sensory neuron excitant capsaicin. Br J Pharmacol 1992;107:544-52
  • Szallasi A, Goso C, Blumberg PM, Manzini S. Competitive-inhibition by capsazepine of [H-3] resiniferatoxin binding to central (spinal-cord and dorsal-root ganglia) and peripheral (urinary-bladder and airways) vanilloid (capsaicin) receptors in the rat. J Pharmacol Exp Ther 1993;267:728-33
  • Correll CC, Phelps PT, Anthes JC, et al. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett 2004;370:55-60
  • Walker KM, Urban L, Medhurst SJ, et al. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 2003;304:56-62
  • Behrendt HJ, Germann T, Gillen C, et al. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 2004;141:737-45
  • Seabrook GR, Sutton KG, Jarolimek W, et al. Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenyl acetate ester) iodo-resiniferatoxin. J Pharmacol Exp Ther 2002;303:1052-60
  • Shimizu I, Iida T, Horiuchi N, Caterina MJ. 5-Iodoresiniferatoxin evokes hypothermia in mice and is a partial transient receptor potential vanilloid 1 agonist in vitro. J Pharmacol Exp Ther 2005;314:1378-85
  • Wahl P, Foged C, Tullin S, Thomsen C. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 2001;59:9-15
  • Lazar J, Braun DC, Toth A, et al. Kinetics of penetration influence the apparent potency of vanilloids on TRPV1. Mol Pharmacol 2006;69:1166-73
  • Kanai Y, Hara T, Imai A. Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin. J Pharm Pharmacol 2006;58:489-93
  • Appendino G, Harrison S, De Petrocellis L, et al. Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists. Brit J Pharmacol 2003;139:1417-24
  • Appendino G, Daddario N, Minassi A, et al. The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination. J Med Chem 2005;48:4663-9
  • Wang Y, Szabo T, Welter JD, et al. High affinity antagonists of the vanilloid receptor. Mol Pharmacol 2002;62:947-56
  • Jakab B, Helyes Z, Varga A, et al. Pharmacological characterization of the TRPV1 receptor antagonist JYL1421 (SC0030) in vitro and in vivo in the rat. Eur J Pharmacol 2005;517:35-44
  • Miranda A, Nordstrom E, Mannem A, et al. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 2007;148:1021-32
  • Thomas KC, Sabnis AS, Johansen ME, et al. Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther 2007;322:830-8
  • Toth A, Blumberg PM, Chen Z, Kozikowski AP. Design of a high-affinity competitive antagonist of the vanilloid receptor selective for the calcium entry-linked receptor population. Mol Pharmacol 2004;65:282-91
  • Tang L, Chen Y, Chen ZL, et al. Antinociceptive pharmacology of N-(4-chlorobenzyl)-N′-(4-hydroxy- 3-iodo-5-methoxybenzyl) thiourea, a high-affinity competitive antagonist of the transient receptor potential vanilloid 1 receptor. J Pharmacol Exp Ther 2007;321:791-8
  • Gunthorpe MJ, Rami HK, Jerman JC, et al. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacol 2004;46:133-49
  • Gavva NR, Tamir R, Qu YS, et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 2005;313:474-84
  • Gavva NR. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 2008;19:19-23
  • Sun Q, Tafesse L, Islam K, et al. 4-(2-Pyridyl)piperazine-1-carboxamides: potent vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 2003;13:3611-6
  • Pomonis JD, Harrison JE, Mark L, et al. N-(4-tertiarybutylphenyl)-4- (3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide(BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 2003;306:387-93
  • Takeda Y, Ishida T, Tsutsui R, et al. Studies on somnolence in the daytime caused by drugs used for neuropathic pain. J Pharmacol Sci 2008;107:246-50
  • Tafesse L, Sun Q, Schmid L, et al. Synthesis and evaluation of pyridazinylpiperazines as vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 2004;14:5513-9
  • Swanson DM, Dubin AE, Shah C, et al. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 2005;48:1857-72
  • Bhattacharya A, Scott BP, Nasser N, et al. Pharmacology and antitussive efficacy of 4-(3-trifluoromethylpyridin2-yl)-piperazine-1-carboxylic acid (5-trifluoromethylpyridin2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J Pharmacol Exp Ther 2007;323:665-74
  • Ognyanov VI, Balan C, Bannon AW, et al. Design of potent, orally available antagonists of the transient receptor potential vanilloid 1. Structure-activity relationships of 2-piperazin-1-yl-1H-benzimidazoles. J Med Chem 2006;49:3719-42
  • Zheng XZ, Hodgetts KJ, Brielmann H, et al. From arylureas to biarylamides to aminoquinazolines: Discovery of a novel, potent TRPV1 antagonist. Bioorg Med Chem Lett 2006;16:5217-21
  • Blum CA, Zheng X, Brielmann H, et al. Aminoquinazolines as TRPV1 antagonists: modulation of drug-like properties through the exploration of 2-position substitution. Bioorg Med Chem Lett 2008;18:4573-7
  • Jetter MC, Youngman MA, McNally JJ, et al. N-Isoquinolin-5-yl-N′-aralkyl-urea and -amide antagonists of human vanilloid receptor 1. Bioorg Med Chem Lett 2004;14:3053-6
  • Gomtsyan A, Bayburt EK, Schmidt RG, et al. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J Med Chem 2005;48:744-52
  • El Kouhen R, Surowy CS, Bianchi BR, et al. A-425619 [1-isoquinolin-5-yl-3- (4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther 2005;314:400-9
  • Honore P, Wismer CT, Mikusa J, et al. A-425619 [1-isoquinolin-5-yl-3- (4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 2005;314:410-21
  • Rami HK, Thompson M, Wyman P, et al. Discovery of small molecule antagonists of TRPV1. Bioorg Med Chem Lett 2004;14:3631-4
  • Rami HK, Thompson M, Stemp G, et al. Discovery of SB-705498: A potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg Med Chem Lett 2006;16:3287-91
  • Gomtsyan A, Bayburt EK, Schmidt RG, et al. Discovery of TRPV1 antagonist ABT-102 for treatment of pain. 236th National ACS meeting. Philadelphia, PA; 2008:131
  • Surowy CS, Neelands TR, Bianchi BR, et al. (R)-(5-tert-butyl-2,3-dihydro- 1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo. J Pharmacol Exp Ther 2008;326:879-88
  • Doherty EM, Fotsch C, Bo YX, et al. Discovery of potent, orally available vanilloid receptor-1 antagonists. Structure-activity relationship of N-aryl cinnamides. J Med Chem 2005;48:71-90
  • Norman MH, Zhu JW, Fotsch C, et al. Novel vanilloid receptor-1 antagonists: 1. Conformationally restricted analogues of trans-cinnamides. J Med Chem 2007;50:3497-514
  • Gavva NR, Bannon AW, Hovland DN, et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 2007;323:128-37
  • Tamayo N, Liao HY, Stec MM, et al. Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J Medi Chem 2008;51:2744-57
  • Press release: osteoarthritis trials with GRC 6211 are suspended. Available from: http://www.glenmarkpharma.com/media/pdf/releases/GRC_6211.pdf [Cited 2008]
  • Patapoutian A, Tate S, Woolf CJ. TRP channels: targeting pain at the source. Nat Rev Drug Discov; In press
  • McMahon SB, Wood JN. Increasingly irritable and close to tears: TRPA1 in inflammatory pain. Cell 2006;124:1123-5
  • Fiorentino PM, Tallents RH, Miller JN, et al. Spinal interleukin-1beta in a mouse model of arthritis and joint pain. Arthritis Rheum 2008;58:3100-9
  • Liu L, Yang TM, Liedtke W, Simon SA. Chronic IL-1beta signaling potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons. J Neurophysiol 2006;95:1478-90
  • Cruwys SC, Garrett NE, Kidd BC. Sensory denervation with capsaicin attenuates inflammation and nocicpetion in arthritic rats. Neurosci Lett 1995;193:205-7
  • Honore P. TRPV1 and osteoarthritis pain. In: Feltynek C, Gomtsyan A, editors, Vanilloid Receptor TRPV1 in Drug Discovery: Targeting Pain and other Pathological Disorders, John Wiley; In press
  • Raffa RB. Mechanism of action of analgesics used to treat osteoarthritis pain. Rheum Dis Clin North Am 2003;29:733-45
  • Anesiva announces Adlea ACTIVE-1 Phase-3 clinical trial results. Available from: http://investors.anesiva.com/ media.cfm?Year=2008. [Cited 2008]
  • V377 by PharmEste is a potent TRPV1 antagonist for pain management. Available from: http://www.eocweb.com/pdf_docs/EOC-ENC_Abstract_book.pdf [Cited 2008]
  • Gavva NR, Bannon AW, Surapaneni S, et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 2007;27:3366-74
  • Chung JU, Kim SY, Lim JO, et al. alpha-Substituted N-(4-tert-butylbenzyl)-N′-[4-(methylsulfonylamino)benzyl]thiourea analogues as potent and stereospecific TRPV1 antagonists. Bioorg Med Chem 2007;15:6043-53
  • Gavva NR, Tamir R, Klionsky L, et al. Proton activation does not alter antagonist interaction with the capsaicin-binding pocket of TRPV1. Mol Pharmacol 2005;68:1524-33
  • Valenzano KJ, Grant ER, Wu G, et al. N-(4-tertiarybutylphenyl)-4- (3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide(BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. In vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 2003;306:377-86
  • McDonald HA, Neelands TR, Kort M, et al. Characterization of A-425619 at native TRPV1 receptors: A comparison between dorsal root ganglia and trigeminal ganglia. Eur J Pharmacol 2008
  • Doherty EM, Fotsch C, Bannon AW, et al. Novel vanilloid receptor-1 antagonists: 2. Structure-activity relationships of 4-oxopyrimidines leading to the selection of a clinical candidate. J Med Chem 2007;50:3515-27
  • Wang HL, Katon J, Balan C, et al. Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties. J Med Chem 2007;50:3528-39
  • Gunthorpe MJ, Hannan SL, Smart D, et al. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat- mediated activation of the receptor. J Pharmacol Exp Ther 2007;321:1183-92
  • Rigoni M, Trevisani M, Gazzieri D, et al. Neurogenic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin. Brit J Pharmacol 2003;138:977-85
  • Kanai Y, Nakazato E, Fujiuchi A, et al. Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharmacology 2005;49:977-84
  • McGaraughty S, Chu KL, Faltynek CR, Jarvis MF. Systemic and site-specific effects of A-425619, a selective TRPV1 receptor antagonist, on wide dynamic range neurons in CFA-treated and uninjured rats. J Neurophysiol 2006;95:18-25
  • Chizh BA, O'Donnell MB, Napolitano A, et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 2007;132:132-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.