300
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Antimicrobial peptides: to membranes and beyond

&
Pages 659-671 | Published online: 21 May 2009

Bibliography

  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389-95
  • Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006;24:1551-7
  • Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 2005;80:717-35
  • Marcos JF, Muñoz A, Pérez-Payá E, et al. Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 2008;46:273-301
  • Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 2007;270:1-11
  • Papagianni M. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 2003;21:465-99
  • Rydlo T, Miltz J, Mor A. Eukaryotic antimicrobial peptides: promises and premises in food safety. J Food Sci 2006;71:R125-35
  • Brown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006;18:24-30
  • Braff MH, Hawkins MA, Di Nardo A, et al. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 2005;174:4271-4278
  • Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol 2005;6:551-7
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3:238-50
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003;55:27-55
  • Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006;19:491-511
  • Casteels P, Tempst P. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun 1994;199:339-45
  • Steffen H, Rieg S, Wiedemann I, et al. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother 2006;50:2608-20
  • Vylkova S, Nayyar N, Li WS, Edgerton M. Human beta-defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Antimicrob Agents Chemother 2007;51:154-61
  • Mochon AB, Liu HP. The antimicrobial peptide Histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog 2008;4:e1000190
  • Monk BC, Niimi K, Lin S, et al. Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 2005;49:57-70
  • Muñoz A, López-García B, Marcos JF. Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob Agents Chemother 2006;50:3847-55
  • Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 2007;5:951-9
  • Otvos L Jr. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 2005;11:697-706
  • Aerts AM, Francois IEJA, Cammue BPA, Thevissen K. The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 2008;65:2069-79
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4:529-36
  • Wade D, Boman A, Wahlin B, et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 1990;87:4761-5
  • Luque-Ortega JR, Van't Hof W, Veerman ECI, et al. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 2008;22:1817-28
  • Bulet P, Urge L, Ohresser S, et al. Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem 1996;238:64-9
  • Piers KL, Brown MH, Hancock REW. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 1994;38:2311-6
  • Farnaud S, Spiller C, Moriarty L, et al. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett 2004;233:193-9
  • Peschel A, Otto M, Jack RW, et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999;274:8405-10
  • Guo L, Lim KB, Poduje CM, et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 1998;95:189-98
  • Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 2001;193:1067-76
  • Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J Biol Chem 2005;280:10378-87
  • Rosenfeld Y, Barra D, Simmaco M, et al. A synergism between temporins toward gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 2006;281:28565-74
  • Hsu STD, Breukink E, Tischenko E, et al. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 2004;11:963-7
  • Wiedemann I, Breukink E, van Kraaij C, et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 2001;276:1772-9
  • Breukink E, Wiedemann I, van Kraaij C, et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 1999;286:2361-4
  • Dielbandhoesing SK, Zhang H, Caro LH, et al. Specific cell wall proteins confer resistance to Nisin upon yeast cells. Appl Environ Microbiol 1998;64:4047-52
  • Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov 2006;5:321-3
  • Brotz H, Bierbaum G, Leopold K, et al. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998;42:154-60
  • Thevissen K, Idkowiak-Baldys J, Im YJ, et al. SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Lett 2005;579:1973-7
  • Stock SD, Hama H, Radding JA, et al. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Antimicrob Agents Chemother 2000;44:1174-80
  • Thevissen K, Cammue BPA, Lemaire K, et al. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci USA 2000;97:9531-6
  • Ramamoorthy V, Cahoon EB, Jia L, et al. Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 2007;66:771-86
  • Thevissen K, Warnecke DC, François IEJA, et al. Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 2004;279:3900-5
  • Vylkova S, Li XS, Berner JC, Edgerton M. Distinct antifungal mechanisms: b-Defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Antimicrob Agents Chemother 2006;50:324-31
  • Lobo DS, Pereira IB, Fragel-Madeira L, et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 2007;46:987-96
  • Ibeas JI, Lee H, Damsz B, et al. Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 2000;23:375-83
  • Hagen S, Marx F, Ram AF, Meyer V. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 2007;73:2128-34
  • Fujimura M, Ideguchi M, Minami Y, et al. Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci Biotechnol Biochem 2005;69:642-5
  • Georgopapadakou NH. Update on antifungals targeted to the cell wall: focus on b-1,3-glucan synthase inhibitors. Expert Opin Investig Drugs 2001;10:269-80
  • Thevissen K, François IEJA, Aerts AM, Cammue BPA. Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 2005;6:923-8
  • Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends Microbiol 2003;11:272-9
  • Selitrennikoff CP, Nakata M. New cell wall targets for antifungal drugs. Curr Opin Investig Drugs 2003;4:200-5
  • Heinisch J. Baker's yeast as a tool for the development of antifungal drugs which target cell integrity – an update. Expert Opin Drug Discov 2008;3:931-43
  • Yun DJ, Zhao Y, Pardo JM, et al. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 1997;94:7082-7
  • Li XS, Reddy MS, Baev D, Edgerton M. Candida albicans Ssa1/2p Is the cell envelope binding protein for human salivary Histatin 5. J Biol Chem 2003;278:28553-61
  • Jang WS, Li XWS, Sun JNN, Edgerton M. The P-113 fragment of Histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob Agents Chemother 2008;52:497-504
  • Sun JNN, Li WS, Jang WS, et al. Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Mol Microbiol 2008;70:1246-60
  • Li M, Lai YP, Villaruz AE, et al. Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 2007;104:9469-74
  • Hong RW, Shchepetov M, Weiser JN, Axelsen PH. Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide Cecropin A. Antimicrob Agents Chemother 2003;47:1-6
  • Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 2004;48:3260-7
  • Gamberi T, Cavalieri D, Magherini F, et al. An integrated analysis of the effects of Esculentin 1-21 on Saccharomyces cerevisiae. Biochim Biophys Acta 2007;1774:688-700
  • Vylkova S, Jang WS, Li WS, et al. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell 2007;6:1876-88
  • Morton CO, Hayes A, Wilson M, et al. Global phenotype screening and transcript analysis outlines the inhibitory mode(s) of action of two amphibian-derived, alpha-helical, cationic peptides on Saccharomyces cerevisiae. Antimicrob Agents Chemother 2007;51:3948-59
  • Bader MW, Sanowar S, Daley ME, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005;122:461-72
  • Fields PI, Groisman EA, Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 1989;243:1059-62
  • Miller SI, Pulkkinen WS, Selsted ME, Mekalanos JJ. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 1990;58:3706-10
  • McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 2003;50:205-17
  • Gunn JS, Lim KB, Krueger J, et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 1998;27:1171-82
  • Narasimhan ML, Coca MA, Jin JB, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 2005;17:171-80
  • Narasimhan ML, Damsz B, Coca MA, et al. A plant defense response effector induces microbial apoptosis. Mol Cell 2001;8:921-30
  • Koo JC, Lee B, Young ME, et al. Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts. Plant Cell Physiol 2004;45:1669-80
  • Ramamoorthy V, Zhao XH, Snyder AK, et al. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 2007;9:1491-506
  • Morton CO, dos Santos SC, Coote P. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol Microbiol 2007;65:494-507
  • Andrés MT, Viejo-Díaz M, Fierro JF. Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K + channel-mediated K + efflux. Antimicrob Agents Chemother 2008;52:4081-8
  • Leiter E, Szappanos H, Oberparleiter C, et al. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 2005;49:2445-53
  • Madeo F, Herker E, Wissing S, et al. Apoptosis in yeast. Curr Opin Microbiol 2004;7:655-60
  • Lupetti A, Paulusma-Annema A, Senesi S, et al. Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother 2002;46:1634-9
  • Aerts AM, François IEJA, Meert EMK, et al. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 2007;13:243-7
  • Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci USA 2001;98:14637-42
  • Veerman ECI, Nazmi K, van Hof W, et al. Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5. Biochem J 2004;381:447-52
  • Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999;274:32555-64
  • Park CB, Yi KS, Matsuzaki K, et al. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 2000;97:8245-50
  • Kragol G, Hoffmann R, Chattergoon MA, et al. Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 2002;269:4226-37
  • Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 1998;244:253-7
  • van der Kraan MIA, van Marle J, Nazmi K, et al. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 2005;26:1537-42
  • van der Weerden NL, Lay FT, Anderson MA. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 2008;283:14445-52
  • Gyurko C. Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek Int J Gen Molec Microbiol 2001;79:297-309
  • Powers JPS, Martin MM, Goosney DL, Hancock REW. The antimicrobial peptide polyphemusin localizes to the cytoplasm of Escherichia coli following treatment. Antimicrob Agents Chemother 2006;50:1522-4
  • Gelhaus C, Jacobs T, Andra J, Leippe M. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 2008;52:1713-20
  • Haukland HH, Ulvatne H, Sandvik K, Vorland LH. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 2001;508:389-93
  • Henriques ST, Melo MN, Castanho MARB. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 2006;399:1-7
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008;5:105-17
  • Palm C, Netzerea S, Hallbrink M. Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 2006;27:1710-6
  • Jung HJ, Park Y, Hahm KS, Lee DG. Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochem Biophys Res Commun 2006;345:222-8
  • Jones AT. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides. Int J Pharm 2008;354:34-8
  • Duchardt F, Fotin-Mleczek M, Schwarz H, et al. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 2007;8:848-66
  • Console S, Marty C, García-Echeverría C, et al. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 2003;278:35109-14
  • Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998;160:91-6
  • Patrzykat A, Friedrich CL, Zhang LJ, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002;46:605-14
  • Friedrich CL, Rozek A, Patrzykat A, Hancock REW. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 2001;276:24015-22
  • Lehrer RI, Barton A, Daher KA, et al. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 1989;84:553-61
  • Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993;61:2978-84
  • Kragol G, Lovas S, Varadi G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001;40:3016-26
  • Otvos L Jr, OI, Rogers ME, et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000;39:14150-9
  • Kramer NE, Van Hijum SAFT, Knol J, et al. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 2006;50:1753-61
  • Boix E, Nogues MV. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 2007;3:317-35
  • Chadha P, Das RH. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 2006;225:213-22
  • Nogales J, Muñoz S, Olivares J, Sanjuán J. Sinorhizobium meliloti genes involved in tolerance to the antimicrobial peptide protamine. FEMS Microbiol Lett 2006;264:160-7
  • Stephens C, Harrison SJ, Kazan K, et al. Altered fungal sensitivity to a plant antimicrobial peptide through over-expression of yeast cDNAs. Curr Genet 2005;47:194-201
  • Matsuzaki K, Sugishita K, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett 1999;449:221-4
  • Hsu CH, Chen CP, Jou ML, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 2005;33:4053-64
  • Ulvatne H, Samuelsen O, Haukland HH, et al. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 2004;237:377-84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.