121
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Design and in silico screening of inhibitors of the cholera toxin

Pages 923-938 | Published online: 20 Aug 2009

Bibliography

  • In Cholera. WHO Cholera Fact Sheet November, 2008
  • World Health Organization. Wkly Epidemiol Rec 2006;81:297
  • In World Health Organization. Disease outbreak news February 20, 2009
  • In Cholera cases and deaths reported to WHO. WHO Weekly 2002
  • Pulungsih SP, Punjabi NH, Rafli K, et al. Standard WHO-ORS versus reducedosmolarity ORS in the management of cholera patients. J Health Popul Nutr 2006;24:107-12
  • Sack DA, Sack RB, Chaignat CL. Getting serious about cholera. N Engl J Med 2006;355:649-51
  • De SN. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 1959;183:1533-4
  • Dutta NK, Panse MV, Kulkarni DR. Role of cholera toxin in experimental cholera. J Bacteriol 1959;78:594-5
  • Finkelstein RA, Norris HT, Dutta NK. Pathogenesis experimental cholera in infant rabbits. J Infect Dis 1964;114:203-16
  • Lencer WI. Retrograde transport of cholera toxin into the ER of the host cells. Int. J Med Microbiol 1994;293:491-4
  • Robinshaw JD, Russel DW, Harris BA, et al. Deduced primary structure of the alpha subunit of the GTP-binding stimulatory protein of adenylate cyclase. Proc Natl Acad Sci USA 1986;83:1251-5
  • Merrit EA, Hol WG. AB5 toxins. Curr Opin Struct Biol 1995;5:165-71
  • Sixma TK, Pronk SE, Kalk KH, et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 1991;351:371-7
  • Fraser ME, Chernaia MM, Kozlov YV, James MN. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nat Struct Biol 1994;1:59-64
  • Yang J, Mou J, Shao Z. Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett 1994;338:89-92
  • Stein PE, Boodhoo A, Tyrrell GJ, et al. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 1992;355:748-50
  • Fan E, Merritt EA, Verlinde CLMJ, Hol WGJ. AB5 toxins: structures and inhibitor design. Curr Opin Struct Biol 2000;10:680-6
  • Chong DC, Paton JC, Thorpe CM, Paton AW. Clathrin-dependent trafficking of subtilase cytotoxin, a novel AB5 toxin that targets the endoplasmic reticulum chaperone BiP. Cell Microbiol 2008;10:795-806
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993;57:50-108
  • Robien MA, Krumm BE, Sandkvist M, Hol WG. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 2003;333:657-74
  • Kahn RA, Fu H, Roy CR. Cellular hijacking: a common strategy for microbial infection. Trends Biochem Sci 2002;27:308-14
  • Majoul IV, Bastiaens PI, Soling HD. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol 1996;133:777-89
  • Lencer WI, Constable C, Moe S, et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 1995;131:951-62
  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA. Protein disulfide dsomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 2001;104:937-48
  • Bastiaens PI, Majoul IV, Verveer PJ, et al. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 1996;15:4246-53
  • Schmitz A, Herrgen H, Winkeler A, Herzog V. Cholera toxin is exported from microsomes by the Sec61p complex. J Cell Biol 2000;148:1203-12
  • Teter K, Holmes RK, Schmitz A, et al. Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Cholera toxin is exported from microsomes by the Sec61p complex. Infect Immun 2002;70:6172-9
  • Tsai B, Rapoport TA. Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J Cell Biol 2002;159:207-16
  • Salmond RJ, Luross JA, Williams NA. Immune modulation by the cholera-like enterotoxins. Expert Rev Mol Med 2002;1:1-16
  • Fujinaga Y. Transport of bacterial toxins into target cells: pathways followed by cholera toxin and botulinum progenitor toxin. J Biochem 2006;140:155-60
  • Zhang R-G, Scott DL, Westbrook ML, et al. The three-dimensional crystal structure of cholera toxin. J Mol Biol 1995;251:563-73
  • Fan E, O'Neal CJ, Mitchell DD, et al. Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. Int J Med Microbiol 2004;294:217-23
  • O'Neal CJ, Amaya EI, Jobling MG, et al. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 2004;43:3772-82
  • van den Akker F, Merritt EA, Pizza M, et al. The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active site loop 47-56 of the A subunit. Biochemistry 1995;34:10996-1004
  • Merritt EA, Kuhn P, Sarfaty S, et al. The 1.25 Å resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. J Mol Biol 1998;282:1043-59
  • Zenser TV. Inhibition of cholera toxin-stimulated intestinal epithelial cell adenylate cyclase by adenosine analogs. Proc Soc Exp Biol Med 1976;152:126-9
  • Velter IA, Politi M, Podlipnik C, Nicotra F. Natural and synthetic cholera toxin antagonists. Mini Rev Med Chem 2007;7:159-70
  • Saito T, Miyake M, Toba M, et al. Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol Immunol 2002;46:249-55
  • Toda M, Okubo S, Ikigai H, et al. The protective activity of tea catechins against experimental infection by Vibrio cholerae O1. Microbiol Immunol 1992;36:999-1001
  • Zhou GC, Parikh SL, Tyler PC, et al. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states. J Am Chem Soc 2004;126:5690-8
  • Zhang G. Design, synthesis, and evaluation of bisubstrate analog inhibitors of cholera toxin. Bioorg Med Chem Lett 2008;18:3724-7
  • Podlipnik C. Docking of selected natural polyphenols to ARF activated A1 subunit of Cholera toxin. Acta Chim Slov 2009;56:156-65
  • Locht C, Antoine R. A proposed mechanism of ADP-ribosylation catalyzed by the pertussis toxin S1 subunit. Biochimie 1995;77:333-40
  • Lobet Y, Cluff CW, Cieplak WJ. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect Immun 1991;59:2870-9
  • Cieplak WJ, Mead DJ, Messer RJ, Grant CC. Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. Evidence for a catalytic role for glutamic acid 112. J Biol Chem 1995;270:30545-50
  • Kaslow HR, Platter B, Takada T, et al. Bacterial protein toxins ASM Press: New York, 1992
  • Jobling MG, Holmes RK. Biological and biochemical characterization of variant A subunits of cholera toxin constructed by site-directed mutagenesis. J Bacteriol 2001;183:4024-32
  • Oppenheimer NJ. Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J Biol Chem 1978;253:4907-10
  • Soman G, Narayanan J, Martin BL, Graves DJ. Use of substituted (benzylidineamino)guanidines in the study of guanidino group specific ADP-ribosyltransferase. Biochemistry 1986;25:4113-9
  • Scheuring J, Schramm VL. Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20. Biochemistry 1997;36:8215-23
  • Scheuring J, Schramm VL. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin. Biochemistry 1997;36:4526-34
  • Rising KA, Schramm VL. Transition state analysis of NAD+ hydrolysis by the cholera toxin catalytic subunit. J Am Chem Soc 1997;119:27-37
  • Li J, Zhang G, Zhang Z, Fan E. TFA-sensitive arylsulfonylthiourea-assisted synthesis of N,N'-substituted guanidines. J Org Chem 2003;68:1611-4
  • Lewandowicz A, Tyler PC, Evans GB, et al. Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J Biol Chem 2003;278:31465-8
  • Lee YC, Lee RT. Carbohydrate-protein Interactions: basis of glycobiology. Acc Chem Res 1995;28:321-7
  • Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37:2754-94
  • Kitov PI, Sadowska JM, Mulvey G, et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000;403:669-72
  • Kitova EN, Kitov PI, Bundle DR, Klassen JS. The observation of multivalent complexes of Shiga-like toxin with globotriaoside and the determination of their stoichiometry by nanoelectrospray Fourier-transform ion cyclotron resonance mass spectrometry. Glycobiology 2001;11:605-11
  • Ho JGS, Kitov PI, Paszkiewicz E, et al. Ligand-assisted aggregation of proteins: dimmerization of serum amyloid P component by bivalent ligands. J Biol Chem 2005;280:31999-2008
  • Solomon D, Kitov PI, Paszkiewicz E, et al. Heterobifunctional multivalent inhibitor-adaptor mediates specific aggregation between Shiga toxin and a pentraxin. Org Lett 2005;7:4369-72
  • Kitov PI, Mulvey GL, Griener TP, et al. In vivo supramolecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proc Natl Acad Sci USA 2008;105:16837-42
  • Liu J, Zhang Z, Tan X, et al. Protein heterodimerization through ligand-bridged multivalent pre-organization: enhancing ligand binding toward both protein targets. J Am Chem Soc 2005;127:2044-5
  • Zhang Z, Merritt EA, Ahn M, et al. Solution and crystallographic studies of branched multivalent ligands that inhibit the receptor-binding of cholera toxin. J Am Chem Soc 2002;124:12991-8
  • Merritt EA, Zhang Z, Pickens JC, et al. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J Am Chem Soc 2002;124:8818-24
  • Fan E, Zhang Z, Minke WE, et al. High-affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design. J Am Chem Soc 2000;122:2663-4
  • Liu J, Begley D, Mitchell DD, et al. Multivalent drug design and inhibition of cholera toxin by specific and transient protein–ligand Interactions. Chem Biol Drug Des 2008;71:408-19
  • Polizzotti BD, Maheshwari R, Vinkenborg J, Kiick KL. Effects of saccharide spacing and chain extension on toxin inhibition by glycopolypeptides of well-defined architecture. Macromolecules 2007;40:7103-10
  • Zhang Z, Pickens JC, Hol WGJ, Fan E. Solution- and solid-phase syntheses of guanidine-bridged, water-soluble linkers for multivalent ligand design. Org Lett 2004;6:1377-80
  • Merritt EA, Sixma TK, Kalk KH, et al. Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT). Mol Microbiol 1994;13:745-53
  • Mitchell DD, Pickens JC, Korotkov K, et al. 3,5-Substituted phenyl galactosides as leads in designing effective cholera toxin antagonists: synthesis and crystallographic studies. Bioorg Med Chem 2004;12:907-20
  • Zhang Z, Liu J, Verlinde CLMJ, et al. Large cyclic peptides as cores of multivalent ligands: application to inhibitors of receptor binding by cholera toxin. J Org Chem 2004;69:7737-40
  • Vrasidas I, Mol NJD, Liskamp RMJ, Pieters RJ. Synthesis of lactose dendrimers and multivalency effects in binding to the cholera toxin B subunit. Eur J Org Chem 2001:4685-92
  • Arosio D, Vrasidas I, Valentini P, et al. Synthesis and cholera toxin binding properties of multivalent GM1 mimics. Org Biomol Chem 2004;2:2113-24
  • Branderhorst HM, Liskamp RMJ, Visser GM, Pieters RJ. Strong inhibition of cholera toxin binding by galactose dendrimers. Chem Commun 2007:5043-5
  • Pukin AV, Branderhorst HM, Sisu C, et al. Strong inhibition of cholera toxin by multivalent GM1 derivatives. ChemBioChem 2007;8:1500-3
  • Sisu C, Baron AJ, Branderhorst HM, et al. The influence of ligand valency on aggregation mechanisms for inhibiting bacterial toxins. ChemBioChem 2009;10:329-37
  • Bernardi A, Arosio D, Sonnino S. Mimicking gangliosides by design: mimics of GM1 headgroup. Neurochem Res 2002;27:539-45
  • Bernardi A, Checchia A, Brocca P, et al. Sugar mimics: an artificial receptor for cholera toxin. J Am Chem Soc 1999;121:2032-6
  • Bernardi A, Arosio D, Manzoni L, et al. Mimics of ganglioside GM1 as cholera toxin ligands: replacement of the GalNAc residue. Org Biomol Chem 2003;1:785-92
  • Arosio D, Fontanella M, Baldini L, et al. A synthetic divalent cholera toxin glycocalix[4]arene ligand having higher affinity than natural GM1 oligosaccharide. J Am Chem Soc 2005;127:3660-1
  • Sinclair HR, Smejkal CW, Glister C, et al. Sialyloligosaccharides inhibit cholera toxin binding to the GM1 receptor. Carbohydr Res 2008;343:2589-94
  • Liu S, Kiick KL. Architecture effects on the binding of cholera toxin by helical glycopolypeptides. Macromolecules 2008;41:764-72
  • Rai P, Padala C, Poon V, et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat Biotechnol 2006;24:582-6
  • Polyzos A, Alderton MR, Dawson RM, Hartley PG. Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin. Bioconjug Chem 2007;18:1442-9
  • Shi J, Yang T, Kataoka S, et al. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc 2007;129:5954-61
  • Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring, Part 2: Enrichment factors in database screening. J Med Chem 2004;47:1750-9
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. I. Method and assessment of docking accuracy. J Med Chem 2004;47:1739-49
  • Morris GM, Goodsell DS, Huey R, Olson AJ. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 1996;10:293-304
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639-62
  • Zhang G. Design, synthesis and evaluation of cholera toxin inhibitors. Doctoral Thesis, University of Washington, 2006
  • Srebnik S, Shakhnovich EI, Chakraborty AK. Adsorption/freezing transition for random heteropolymers near disordered 2-D manifolds due to pattern matching. Phys Rev Lett 1996;77:3157-60
  • Golumbfskie AJ, Pande VS, Chakraborty AK. Simulation of biomimetic recognition between polymers and surfaces. Proc Natl Acad Sci USA 1999;96:11707-12
  • Podlipnik C, Velter I, Ferla BL, et al. First round of a focused library of cholera toxin inhibitors. Carbohydr Res 2007;342:1651-60
  • Podlipnik C, Bernardi A. Design of a focused virtual library to explore cholera toxin B-site. Acta Chim Slov 2007;54:425-36
  • Chen D, Menche G, Power TD, et al. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins Struct Funct Bioinform 2007;67:593-605
  • Minke WE, Diller DJ, Hol WG, Verlinde CL. The role of waters in docking strategies with incremental flexibility for carbohydrate derivatives: heat-labile enterotoxin, a multivalent test case. J Med Chem 1999;42:1778-88
  • NCI Diversity Dataset. Available from: http://autodock.scripps.edu/resources/databases
  • Sharmilaa DJS, Veluraja K. Conformations of higher gangliosides and their binding with cholera toxin – investigation by molecular modeling, molecular mechanics, and molecular dynamics. J Biomol Struct Dyn 2006;23:641-56
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem Int Ed 2001;40:2004-21
  • Rosenzweig BA, Ross NT, Tagore DM, et al. Multivalent protein binding and precipitation by self-assembling molecules on a DNA pentaplex scaffold. J Am Chem Soc 2009;131:5020-1
  • Chung WY, Carter R, Hardy T, et al. Inhibition of Escherichia coli heat-labile enterotoxin B subunit pentamer (EtxB5) assembly in vitro using monoclonal antibodies. J Biol Chem 2006;281:39465-70
  • Ni J, Singh S, Wang L-X. Improved preparation of perallylated cyclodextrins: facile synthesis of cyclodextrin-based polycationic and polyanionic compounds. Carbohydr Res 2002;337:217-20
  • Shin SBY, Yoo B, Todaro LJ, Kirshenbaum K. Cyclic peptoids. J Am Chem Soc 2007;129:3218-25
  • Bowman M-C, Ballard TE, Ackerson CJ, et al. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 2008;130:6896-7
  • Seifert MHJ. Targeted scoring functions for virtual screening. Drug Discov Today 2009;14:562-9
  • Charifson PS, Corkery JJ, Murcko MA, Walters WP. Consensus scoring: a method for obtaining improved hit-rates from docking databases of three-dimensional structures into proteins. J Med Chem 1999;42:5100-9
  • Wang R, Wang S. How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 2001;41:1422-6
  • Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 2000;43:4759-67
  • Teramoto R, Fukunishi H. Supervised consensus scoring for docking and virtual screening. J Chem Inf Model 2007;47:526-34
  • Taroni C, Jones S, Thornton JM. Analysis and prediction of carbohydrate binding sites. Protein Eng 2000;13:89-98
  • Kerzmann A. Fuhrmann J, Kohlbacher O, Neumann D. BALLDock/SLICK: a new method for protein-carbohydrate docking. J Chem Inf Model 2008;48:1616-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.