307
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Advances in nuclear magnetic resonance for drug discovery

Pages 1077-1098 | Published online: 28 Aug 2009

Bibliography

  • Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today 2005;10(2):139-47
  • Garnier J-P. Rebuilding the R&D engine in big pharma. Harv Bus Rev 2008;86(5):68-70, 2-6, 128
  • Weisbach JA, Moos WH. Diagnosing the decline of major pharmaceutical research laboratories: a prescription for drug companies. Drug Dev Res 1995;34(3):243-59
  • Horrobin DF. Realism in drug discovery-could Cassandra be right? Nat Biotechnol 2001;19(12):1099-100
  • Cuatrecasas P. Drug discovery in jeopardy. J Clin Invest 2006;116(11):2837-42
  • Kola I, Landis J. Opinion: can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-6
  • Caldwell GW, Ritchie DM, Masucci JA, et al. The new pre-preclinical paradigm: compound optimization in early and late phase drug discovery. Curr Top Med Chem (Hilversum, Netherlands) 2001;1(5):353-66
  • Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 2004;3(5):417-29
  • Karlberg JPE. Trends in disease focus of drug development. Nat Rev Drug Discov 2008;7(8):639-40
  • Owens J. Big pharma slims down to bolster productivity. Nat Rev Drug Discov 2007;6(3):173-4
  • Wermuth CG. Similarity in drugs: reflections on analogue design. Drug Discov Today 2006;11(7 & 8):348-54
  • Booth B, Zemmel R. Opinion: quest for the best. Nat Rev Drug Discov 2003;2(10):838-41
  • Zhong X, Moseley GB, III. Mission possible: managing innovation in drug discovery. Nat Biotechnol 2007;25(8):945-6
  • Booth B, Zemmel R. Prospects for productivity. Nat Rev Drug Discov 2004;3(5):451-6
  • Cavalla D. The extended pharmaceutical enterprise. Drug Discov Today 2003;8(6):267-74
  • Frantz S. Chemistry outsourcing going global. Nat Rev Drug Discov 2006;5(5):362-3
  • Ullman F, Boutellier R. Drug discovery: are productivity metrics inhibiting motivation and creativity? Drug Discov Today 2008;13(21/22):997-1001
  • Ullman F, Boutellier R. A case study of lean drug discovery: from project driven research to innovation studios and process factories. Drug Discov Today 2008;13(11/12):543-50
  • Mackay M, Street SDA, McCall JM. Risk reduction in drug discovery and development. Curr Top Med Chem (Sharjah, United Arab Emirates) 2005;5(11):1087-90
  • Lewis CT, O'Connor PM. Discovering novel anticancer drugs: practical aspects and recent advances. Methods Mol Biol (Totowa, NJ, US) 2003;223 (Tumor Suppressor Genes, Volume 2):425-63
  • Senn S. Some statistical issues in project prioritization in the pharmaceutical industry. Stat Med 1996;15(24):2689-702
  • Schmid Esther F, Smith Dennis A. Is pharmaceutical R&D just a game of chance or can strategy make a difference? Drug Discov Today 2004;9(1):18-26
  • Handen Jeffrey S. The industrialization of drug discovery. Drug Discov Today 2002;7(2):83-5
  • Pichler FB, Turner SJ. The power and pitfalls of outsourcing. Nat Biotechnol 2007;25(10):1093-6
  • Adam M. What to expect from rational drug design. Expert Opin Drug Discov 2007;2(6):773-6
  • Sams-Dodd F. Drug discovery: selecting the optimal approach. Drug Discov Today 2006;11(9 & 10):465-72
  • Lahana R. How many leads from HTS? Drug Discov Today 1999;4(10):447-8
  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 2002;45(8):1712-22
  • McGovern SL, Helfand BT, Feng B, Shoichet BK. A specific mechanism of nonspecific inhibition. J Med Chem 2003;46(20):4265-72
  • Rishton GM. Reactive compounds and in vitro false positives in HTS. Drug Discov Today 1997;2(9):382-4
  • Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 2003;46(21):4477-86
  • Kubinyi H. Opinion: drug research: myths, hype and reality. Nat Rev Drug Discov 2003;2(8):665-8
  • Pellecchia M, Bertini I, Cowburn D, et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 2008;7(9):738-45
  • Davis B, Hubbard J. Applications of NMR in structure-based drug discovery. Struct-Based Drug Discov 2006;97-141
  • Zartler ER, Shapiro MJ. Protein NMR-based screening in drug discovery. Curr Pharm Des 2006;12(31):3963-72
  • Jahnke W. Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. J Biomol NMR 2007;39(2):87-90
  • Snyder DA, Chen Y, Denissova NG, et al. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J Am Chem Soc 2005;127(47):16505-11
  • Yee AA, Savchenko A, Ignachenko A, et al. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 2005;127(47):16512-7
  • Montelione GT, Arrowsmith C, Girvin ME, et al. Unique opportunities for NMR methods in structural genomics. J Struct Funct Genomics 2009;10(2):101-6
  • Sprangers R, Gribun A, Hwang PM, et al. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci USA 2005;102(46):16678-83
  • Jain NU, Wyckoff TJO, Raetz CRH, Prestegard JH. Rapid analysis of large protein-protein complexes using NMR-derived orientational constraints: the 95kDa complex of LpxA with acyl carrier protein. J Mol Biol 2004;343(5):1379-89
  • Tugarinov V, Muhandiram R, Ayed A, Kay LE. Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J Am Chem Soc 2002;124(34):10025-35
  • Tugarinov V, Kay LE. Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 2005;44(49):15970-7
  • Peterson FC, Gettins PGW. Insight into the mechanism of serpin-proteinase inhibition from 2D [1H-15N] NMR studies of the 69 kDa a1-proteinase inhibitor Pittsburgh-trypsin covalent complex. Biochemistry 2001;40(21):6284-92
  • Liu D, Wang Y-S, Gesell JJ, et al. Backbone resonance assignments of the 45.3 kDa catalytic domain of human BACE1. J Biomol NMR 2004;29(3):425-6
  • Revington M, Zuiderweg ERP. Letter to the editor: TROSY-driven NMR backbone assignments of the 381-residue nucleotide-binding domain of the Thermus thermophilus DnaK molecular chaperone. J Biomol NMR 2004;30(1):113-4
  • Amero C, Schanda P, Dura MA, et al. Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. J Am Chem Soc 2009;131(10):3448-9
  • Mukrasch MD, Bibow S, Korukottu J, et al. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 2009;7(2):399-414
  • LeMaster DM. Deuterium labeling in NMR structural analysis of larger proteins. Q Rev Biophys 1990;23(2):133-74
  • Kigawa T, Muto Y, Yokoyama S. Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 1995;6(2):129-34
  • Goto NK, Kay LE. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 2000;10(5):585-92
  • Zhu G, Yao X. TROSY-based NMR experiments for NMR studies of large biomolecules. Prog Nucl Magn Reson Spectrosc 2008;52(1):49-68
  • Keppetipola S, Kudlicki W, Nguyen BD, et al. From gene to HSQC in under five hours: high-throughput NMR proteomics. J Am Chem Soc 2006;128(14):4508-9
  • Vinarov DA, Markley JL. High-throughput automated platform for nuclear magnetic resonance-based structural proteomics. Expert Rev Proteomics 2005;2(1):49-55
  • Folkers GE, van Buuren BNM, Kaptein R. Expression screening, protein purification and NMR analysis of human protein domains for structural genomics. J Struct Funct Genomics 2004;5(1-2):119-31
  • Ozawa K, Headlam MJ, Schaeffer PM, et al. Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 2004;271(20):4084-93
  • de Alba E, Tjandra N. Residual dipolar couplings in protein structure determination. Methods Mol Biol (Totowa, NJ, US) 2004;278 (Protein NMR techniques):89-106
  • Clore GM, Starich MR, Bewley CA, et al. Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints. J Am Chem Soc 1999;121(27):6513-4
  • Huang X, Moy F, Powers R. Evaluation of the utility of NMR structures determined from minimal NOE-based restraints for structure-based drug design, using MMP-1 as an example. Biochemistry 2000;39(44):13365-75
  • Gaponenko V, Sarma SP, Altieri AS, et al. Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 2004;28(3):205-12
  • Huang YJ, Moseley HNB, Baran MC, et al. An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 2005;394(NMR of Biological Macromolecules, Part C):111-41
  • Acton TB, Gunsalus KC, Xiao R, et al. Robotic cloning and protein production platform of the northeast structural genomics consortium. Methods Enzymol 2005;394(NMR of Biological Macromolecules, Part C):210-43
  • Hiller S, Fiorito F, Wuethrich K, Wider G. Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 2005;102(31):10876-81
  • Liu G, Shen Y, Atreya HS, et al. NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 2005;102(30):10487-92
  • Atreya HS, Szyperski T. G-matrix fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 2004;101(26):9642-7
  • Eghbalnia HR, Bahrami A, Tonelli M, et al. High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 2005;127(36):12528-36
  • Coggins BE, Venters RA, Zhou P. Filtered backprojection for the reconstruction of a high-resolution (4,2)D CH3-NH NOESY spectrum on a 29 kDa protein. J Am Chem Soc 2005;127(33):11562-3
  • Staykova DK, Fredriksson J, Bermel W, Billeter M. Assignment of protein NMR spectra based on projections, multi-way decomposition and a fast correlation approach. J Biomol NMR 2008;42(2):87-97
  • Szyperski T, Yeh DC, Sukumaran DK, et al. Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 2002;99(12):8009-14
  • Rovnyak D, Frueh DP, Sastry M, et al. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 2004;170(1):15-21
  • Mobli M, Stern AS, Hoch JC. Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 2006;182(1):96-105
  • Hoch JC, Maciejewski MW, Filipovic B. Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 2008;193(2):317-20
  • Mandelshtam VA, Taylor HS, Shaka AJ. Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J Magn Reson 1998;133(2):304-12
  • Schmieder P, Stern AS, Wagner G, Hoch JC. Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 1994;4(4):483-90
  • Orekhov VY, Ibraghimov I, Billeter M. Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 2003;27(2):165-73
  • Orekhov VY, Ibraghimov IV, Billeter M. MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 2001;20(1):49-60
  • Kazimierczuk K, Zawadzka A, Kozminski W. Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 2008;192(1):123-30
  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I. Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 2006;36(3):157-68
  • Kazimierczuk K, Kozminski W, Zhukov I. Two-dimensional fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 2006;179(2):323-8
  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I. Lineshapes and artifacts in multidimensional fourier transform of arbitrary sampled NMR data sets. J Magn Reson 2007;188(2):344-56
  • Schanda P, Van Melckebeke H, Brutscher B. Speeding Up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 2006;128(28):9042-3
  • Schanda P, Kupce E, Brutscher B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few Seconds. J Biomol NMR 2005;33(4):199-211
  • Moseley HNB, Monleon D, Montelione GT. Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 2001;339(NMR of Biological Macromolecules, Part B):91-108
  • Zimmerman DE, Kulikowski CA, Huang Y, et al. Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 1997;269(4):592-610
  • Lescop E, Brutscher B. Highly automated protein backbone resonance assignment within a few hours: the ‘BATCH’ strategy and software package. J Biomol NMR 2009;44(1):43-57
  • Bartels C, Billeter M, Guentert P, Wuethrich K. Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 1996;7(3):207-13
  • Schmucki R, Yokoyama S, Guentert P. Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. J Biomol NMR 2009;43(2):97-109
  • Lin H-N, Wu K-P, Chang J-M, et al. GANA - a genetic algorithm for NMR backbone resonance assignment. Nucleic Acids Res 2005;33(14):4593-601
  • Volk J, Herrmann T, Wuthrich K. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J Biomol NMR 2008;41(3):127-38
  • Eghbalnia HR, Bahrami A, Wang L, et al. Probabilistic Identification of Spin Systems and their Assignments including Coil-Helix Inference as Output (PISTACHIO). J Biomol NMR 2005;32(3):219-33
  • Ferentz AE, Wagner G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 2000;33(1):29-65
  • Guentert P. Automated structure determination from NMR spectra. Eur Biophys J 2009;38(2):129-43
  • Huang YJ, Tejero R, Powers R, Montelione GT. A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins Struct Funct Bioinform 2006;62(3):587-603
  • Rieping W, Habeck M, Bardiaux B, et al. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 2007;23(3):381-2
  • Grishaev A, Llinas M. Protein structure elucidation from minimal NMR data: the CLOUDS approach. Methods Enzymol 2005;394(Nuclear Magnetic Resonance of Biological Macromolecules, Part C):261-95
  • Guntert P. Automated NMR structure calculation with CYANA. Methods Mol Biol (Totowa, NJ, US) 2004;278(Protein NMR Techniques):353-78
  • Kuszewski J, Schwieters CD, Garrett DS, et al. Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J Am Chem Soc 2004;126(20):6258-73
  • Lopez-Mendez B, Guentert P. Automated protein structure determination from NMR spectra. J Am Chem Soc 2006;128(40):13112-22
  • Rohl CA. Protein structure estimation from minimal restraints using Rosetta. Methods Enzymol 2005;394(NMR of Biological Macromolecules, Part C):244-60
  • Schwieters CD, Kuszewski JJ, Clore GM. Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 2006;48(1):47-62
  • Mal TK, Bagby S, Ikura M. Protein structure calculation from NMR data. Methods Mol Biol (Totowa, NJ, US) 2002;173(Calcium-Binding Protein Protocols, Volume 2):267-83
  • Jee J, Guentert P. Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genomics 2003;4(2-3):179-89
  • Herrmann T, Gntert P, Wthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 2002;319(1):209-27
  • Guntert P. Automated NMR protein structure calculation. Prog Nucl Magn Reson Spectrosc 2003;43(3-4):105-25
  • Delaglio F, Kontaxis G, Bax A. Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 2000;122(9):2142-3
  • Prestegard JH, Mayer KL, Valafar H, Benison GC. Determination of protein backbone structures from residual dipolar couplings. Methods Enzymol 2005;394(NMR of Biological Macromolecules, Part C):175-209
  • Shen Y, Vernon R, Baker D, Bax A. De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 2009;43(2):63-78
  • Bhattacharya A, Tejero R, Montelione GT. Evaluating protein structures determined by structural genomics consortia. Proteins Struct Funct Bioinform 2007;66(4):778-95
  • Chakravarti B, Lewis SJ, Chakravarti DN, Raval A. Three dimensional structures of proteins and protein complexes from chemical cross-linking and mass spectrometry: a biochemical and computational overview. Curr Proteomics 2006;3(1):1-21
  • Mori S, Abeygunawardana C, Johnson MON, van Zijl PCM. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson Ser B 1995;108(1):94-8
  • Haner RL, Llanos W, Mueller L. Small volume flow probe for automated direct-injection NMR analysis: design and performance. J Magn Reson 2000;143(1):69-78
  • Stark J, Powers R. Rapid protein-ligand costructures using chemical shift perturbations. J Am Chem Soc 2008;130(2):535-45
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19(14):1639-62
  • Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007;28(6):1145-52
  • Loll PJ, Lattman EE. The crystal structure of the ternary complex of staphylococcal nuclease, calcium, and the inhibitor pdTp, refined at 1.65 Ã. Proteins Struct Funct Genet 1989;5(3):183-201
  • Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003;125(7):1731-7
  • Nilges M. Ambiguous distance data in the calculation of NMR structures. Folding Des 1997;2(4):S53-S7
  • Zhang N, Liu LH, Liu F, et al. NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity. J Mol Biol 2006;363(1):188-200
  • Moy FJ, Chanda PK, Chen JM, et al. NMR solution structure of the catalytic fragment of human fibroblast collagenase complexed with a sulfonamide derivative of a hydroxamic acid compound. Biochemistry 1999;38(22):7085-96
  • Chen JM, Nelson FC, Levin JI, et al. Structure-based design of a novel, potent, and selective inhibitor for MMP-13 utilizing NMR spectroscopy and computer-aided molecular design. J Am Chem Soc 2000;122(40):9648-54
  • John M, Pintacuda G, Park AY, et al. Structure determination of protein-ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 2006;128(39):12910-6
  • Medek A, Hajduk PJ, Mack J, Fesik SW. The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J Am Chem Soc 2000;122(6):1241-2
  • Hajduk PJ, Mack JC, Olejniczak ET, et al. SOS-NMR: a Saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc 2004;126(8):2390-8
  • Sem DS, Yu L, Coutts SM, Jack R. Object-oriented approach to drug design enabled by NMR SOLVE: first real-time structural tool for characterizing protein-ligand interactions. J Cell Biochem 2001(Suppl 37):99-105
  • Pellecchia M, Meininger D, Dong Q, et al. NMR-based structural characterization of large protein-ligand interactions. J Biomol NMR 2002;22(2):165-73
  • Metzler WJ, Claus BL, McDonnell PA, et al. Application of protein-ligand NOE matching to the rapid evaluation of fragment binding poses. Fragm-Based Drug Discov 2008;99-133
  • Dove A, Marshall A. Drug screening-beyond the bottleneck. Nat Biotechnol 1999;17(9):859-63
  • Goode DR, Totten RK, Heeres JT, Hergenrother PJ. Identification of promiscuous small molecule activators in high-throughput enzyme activation screens. J Med Chem 2008;51(8):2346-9
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2001;44(1):235-49
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1-3):3-25
  • Andrews CW, Bennett L, Yu LX. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship. Pharm Res 2000;17(6):639-44
  • Viswanadhan VN, Balan C, Hulme C, et al. Knowledge-based approaches in the design and selection of compound libraries for drug discovery. Curr Opin Drug Discov Devel 2002;5(3):400-6
  • Matter H, Baringhaus K-H, Naumann T, et al. Computational approaches towards the rational design of drug-like compound libraries. Comb Chem High Throughput Screen 2001;4(6):453-75
  • Xu J, Stevenson J. Drug-like index: a new approach to measure drug-like compounds and their diversity. J Chem Inf Comput Sci 2000;40(5):1177-87
  • Jelic D, Mesar V, Basic I, et al. Novel approach to drug discovery in PLIVA - establishing of HTS unit and unique compounds library. PharmaChem 2003;2(6):64-7
  • Xue L, Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 2000;3(5):363-72
  • Lewis RA, Pickett SD, Clark DE. Computer-aided molecular diversity analysis and combinatorial library design. Rev Comput Chem 2000;16:1-51
  • Willett P. Chemoinformatics - similarity and diversity in chemical libraries. Curr Opin Biotechnol 2000;11(1):85-8
  • Spellmeyer DC, Grootenhuis PDJ. Recent developments in molecular diversity. Computational approaches to combinatorial chemistry. Annu Rep Med Chem 1999;34:287-96
  • Gorse D, Lahana R. Functional diversity of compound libraries. Curr Opin Chem Biol 2000;4(3):287-94
  • Villar HO, Koehler RT. Comments on the design of chemical libraries for screening. Mol Divers 2000;5(1):13-24
  • Bohacek RS, McMartin C, Guida WC. The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 1996;16(1):3-50
  • Mestres J, Veeneman GH. Identification of “Latent Hits” in compound screening collections. J Med Chem 2003;46(16):3441-4
  • Kozikowski BA, Burt TM, Tirey DA, et al. The effect of freeze/thaw cycles on the stability of compounds in DMSO. J Biomol Screen 2003;8(2):210-5
  • Kozikowski BA, Burt TM, Tirey DA, et al. The effect of room-temperature storage on the stability of compounds in DMSO. J Biomol Screen 2003;8(2):205-9
  • Posner BA. High-throughput screening-driven lead discovery: meeting the challenges of finding new therapeutics. Curr Opin Drug Discov Devel 2005;8(4):487-94
  • Jahnke W. Fragment-based approaches. Compr Med Chem II 2006;3:939-57
  • Schultz J. Practical aspects of using NMR in fragment-based screening. Fragm-Based Drug Discov 2008;63-98
  • Gribbon P, Sewing A. High-throughput drug discovery: what can we expect from HTS? Drug Discov Today 2005;10(1):17-22
  • Schmitt W, Willmann S. Physiology-based pharmacokinetic modeling: ready to be used. Drug Discov Today Technol 2004;1(4):449-56
  • Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005;4(10):825-33
  • Zimmerman RJ. How and when to apply absorption, distribution, metabolism, excretion, and toxicity. Compr Med Chem II 2006;2:559-72
  • Korfmacher W. Strategies and techniques for higher throughput ADME/PK assays. High-Throughput Anal Pharm Ind 2009;205-31
  • Schuffenhauer A, Ruedisser S, Marzinzik AL, et al. Library design for fragment based screening. Curr Top Med Chem (Sharjah, United Arab Emirates) 2005;5(8):751-62
  • Erlanson DA. Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 2006;17(6):643-52
  • Jencks WP. On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 1981;78(7):4046-50
  • Fischer M, Hubbard RE. Fragment-based ligand discovery. Mol Interv 2009;9(1):22-30
  • Congreve M, Murray CW, Carr R, Rees DC. Fragment-based lead discovery. Annu Rep Med Chem 2007;42:431-48
  • Siegal G, Ab E, Schultz J. Integration of fragment screening and library design. Drug Discov Today 2007;12(23&24):1032-9
  • Mercier KA, Germer K, Powers R. Design and characterization of a functional library for NMR screening against novel protein targets. Comb Chem High Throughput Screen 2006;9(7):515-34
  • Hopkins Andrew L, Groom Colin R, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004;9(10):430-1
  • Fink T, Bruggesser H, Reymond J-L. Virtual exploration of the small-molecule chemical universe below 160 D. Angew Chem Int Ed 2005;44(10):1504-8
  • Hajduk PJ. SAR by NMR: putting the pieces together. Mol Interv 2006;6(5):266-72
  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007;6(3):211-9
  • Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen 2008;13(6):443-8
  • Schade M. Fragment-based lead discovery by NMR. Front Drug Des Discov 2007;3:105-19
  • Clore GM, Gronenborn AM. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Sci 1994;3:372-90
  • Cooke RM. Protein NMR extends into new fields of structural biology. Curr Opin Chem Biol 1997;1(3):359-64
  • Kay LE. NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 1997;75(1):1-15
  • Roberts GCK. Applications of NMR in drug discovery. Drug Discov Today 2000;5(6):230-40
  • Rossi C, Donati A, Sansoni MR. Nuclear magnetic resonance as a tool for the identification of specific DNA-ligand interaction. Chem Phys Lett 1992;189(3):278-80
  • Hajduk PJ, Olejniczak ET, Fesik SW. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 1997;119(50):12257-61
  • Lin M, Shapiro MJ, Wareing JR. Screening mixtures by affinity NMR. J Org Chem 1997;62(25):8930-1
  • Lin M, Shapiro MJ, Wareing JR. Diffusion-edited NMR-affinity NMR for direct observation of molecular interactions. J Am Chem Soc 1997;119(22):5249-50
  • Waldeck AR, Kuchel PW, Lennon AJ, Chapman BE. NMR diffusion measurements to characterize membrane transport and solute binding. Prog Nucl Magn Reson Spectrosc 1997;30(1-2):39-68
  • Wüthrich K. NMR of proteins and nucleic acids. New York: John Wiley & Sons, Inc.; 1986
  • Shirakawa M, Lee SJ, Takimoto M, et al. Interaction of the l-cro repressor protein with operator DNA fragments monitored as to amide proton magnetic resonances. J Mol Struct 1991;242:355-66
  • Otting G. Experimental NMR techniques for studies of protein-ligand interactions. Curr Opin Struct Biol 1993;3(5):760-8
  • Ni F. Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc 1994;26(6):517-606
  • Vogtherr M, Peters T. Application of NMR based binding assays to identify key hydroxy groups for intermolecular recognition. J Am Chem Soc 2000;122(25):6093-9
  • Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem, Int Ed 1999;38(12):1784-8
  • Dalvit C, Pevarello P, Tato M, et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 2000;18(1):65-8
  • Chen A, Shapiro MJ. NOE pumping: a novel NMR technique for identification of compounds with binding affinity to macromolecules. J Am Chem Soc 1998;120(39):10258-9
  • Edwards PD, Albert JS, Sylvester M, et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine Î2-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 2007;50(24):5912-25
  • Dixon AK, Fisch HU. Animal models and ethological strategies for early drug-testing in humans. Neurosci Biobehav Rev 1998;23(2):345-58
  • Preziosi P. Predictive values of animal versus clinical testing in drug evaluation, problems and difficulties. Adv Clin Pharmacol 1977;13(Probl Clin Pharmacol Ther Res: Phase 1 Proc Int Symp Clin Pharmacol 14th):41-69
  • Fox TM. Strains and species variations in pharmacological responses. Symp Ser Immunobiol Stand 1967;5:133-48
  • Halket JM, Waterman D, Przyborowska AM, et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 2005;56(410):219-43
  • Wilson ID, Plumb R, Granger J, et al. HPLC-MS-based methods for the study of metabonomics. J Chromatogr B: Anal Technol Biomed Life Sci 2005;817(1):67-76
  • Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 2007;387(2):525-7
  • Chen H, Pan Z, Talaty N, et al. Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun Mass Spectrom 2006;20(10):1577-84
  • Crockford DJ, Holmes E, Lindon JC, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 2006;78(2):363-71
  • Crockford DJ, Maher AD, Ahmadi KR, et al. 1H NMR and UPLC-MSE statistical heterospectroscopy: characterization of drug metabolites (Xenometabolome) in epidemiological studies. Anal Chem (Washington, DC, USA) 2008;80(18):6835-44
  • Dumas M-E, Canlet C, Debrauwer L, et al. Selection of biomarkers by a multivariate statistical processing of composite metabonomic data sets using multiple factor analysis. J Proteome Res 2005;4(5):1485-92
  • Pan Z, Gu H, Talaty N, et al. Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal Bioanal Chem 2007;387(2):539-49
  • Powers R. NMR metabolomics and drug discovery. Magn Reson Chem 2009; published online(5 Jun 2009)
  • Robertson DG, Reily MD, Baker JD. Metabonomics in pharmaceutical discovery and development. J Proteome Res 2007;6(2):526-39
  • Wishart DS. Applications of metabolomics in drug discovery and development. Drugs R D 2008;9(5):307-22
  • Stoyanova R, Brown TR. NMR spectral quantitation by principal component analysis. NMR Biomed 2001;14(4):271-7
  • Halouska S, Chacon O, Fenton RJ, et al. Use of NMR metabolomics to analyze the targets of D-cycloserine in mycobacteria: role of D-alanine racemase. J Proteome Res 2007;6(12):4608-14
  • Forgue P, Halouska S, Werth M, et al. NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. J Proteome Res 2006;5(8):1916-23
  • Lienemann K, Ploetz T, Pestel S. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis. J Pharmacol Toxicol Methods 2008;58(1):41-9
  • Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol 2008;36(1):140-7
  • Park J-C, Hong Y-S, Kim YJ, et al. A metabonomic study on the biochemical effects of doxorubicin in rats using 1H-NMR spectroscopy. J Toxicol Environ Health A 2009;72(6):374-84
  • Shi C, Wu C-Q, Cao A-M, et al. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats. Toxicol Lett 2007;173(3):161-7
  • Dieterle F, Schlotterbeck G, Ross A, et al. Application of metabonomics in a compound ranking study in early drug development revealing drug-induced excretion of choline into urine. Chem Res Toxicol 2006;19(9):1175-81
  • Cui Q, Lewis IA, Hegeman AD, et al. Metabolite identification via the madison metabolomics consortium database. Nat Biotechnol 2008;26(2):162-4
  • Robinette SL, Zhang F, Bruschweiler-Li L, Bruschweiler R. Web server based complex mixture analysis by NMR. Anal Chem (Washington, DC, Us) 2008;80(10):3606-11
  • Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007;35(Database Iss):D521-6
  • Frishman D, Mokrejs M, Kosykh D, et al. The PEDANT genome database. Nucleic Acids Res 2003;31(1):207-11
  • Mewes HW, Frishman D, Gueldener U, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res 2002;30(1):31-4
  • Thomas PD, Kejariwal A, Campbell MJ, et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003;31(1):334-41
  • Bernal A, Ear U, Kyrpides N. Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res 2001;29(1):126-7
  • Black MT, Hodgson J. Novel target sites in bacteria for overcoming antibiotic resistance. Adv Drug Deliv Rev 2005;57(10):1528-38
  • Jensen LJ, Gupta R, Staerfeldt HH, Brunak S. Prediction of human protein function according to gene ontology categories. Bioinformatics 2003;19(5):635-42
  • Pouliot Y, Gao J, Su QJ, et al. DIAN: a novel algorithm for genome ontological classification. Genome Res 2001;11(10):1766-79
  • Brenner SE. Target selection for structural genomics. Nat Struct Biol 2000;7(Suppl):967-9
  • Buysse JM. The role of genomics in antibacterial target discovery. Curr Med Chem 2001;8(14):1713-26
  • Kramer R, Cohen D. Functional genomics to new drug targets. Nat Rev Drug Discov 2004;3(11):965-72
  • Roses AD, St Jean PL, Ehm MG. Use of whole-genome association scans in disease gene identification, drug discovery and development. IDrugs 2007;10(11):797-804
  • Powers R, Copeland J, Mercier K. Application of FAST-NMR in drug discovery. Drug Discov Today 2008;13(3-4):172-9
  • Mercier KA, Baran M, Ramanathan V, et al. FAST-NMR: Functional Annotation Screening Technology using NMR Spectroscopy. J Am Chem Soc 2006;128(47):15292-9
  • Livingstone CD, Barton GJ. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. CABIOS Comput Appl Biosci 1993;9(6):745-56
  • Mirny LA, Shakhnovich EI. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J Mol Biol 1999;291(1):177-96
  • Gerlt JA, Babbitt PC. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 2001;70:209-46
  • Hajduk PJ, Huth JR, Fesik SW. Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 2005;48(7):2518-25
  • English AC, Groom CR, Hubbard RE. Experimental and computational mapping of the binding surface of a crystalline protein. Protein Eng 2001;14(1):47-59
  • Allen KN, Bellamacina CR, Ding X, et al. An experimental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem 1996;100(7):2605-11
  • Liepinsh E, Otting G. Organic solvents identify specific ligand-binding sites on protein surfaces. Nat Biotechnol 1997;15(3):264-8
  • Takai-Igarashi T, Kaminuma T. A pathway finding system for the cell signaling networks database. In Silico Biol 1999;1(3):129-46
  • Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004;32(Database):D277-80
  • Krieger CJ, Zhang P, Mueller LA, et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004;32(Database):D438-42
  • Gubernator K, Boehm HJ. Examples of active areas of structure based-design. Methods Princ Med Chem 1998;6:15-36
  • Kubinyi H. Structure-based design of enzyme inhibitors and receptor ligands. Curr Opin Drug Discov Devel 1998;1(1):4-15
  • Sintchak MD, Nimmesgern E. The structure of inosine 5′-monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology 2000;47(2-3):163-84
  • Mihelich ED, Schevitz RW. Structure-based design of a new class of anti-inflammatory drugs: secretory phospholipase A2 inhibitors, SPI. Biochim Biophys Acta Mol Cell Biol Lipids 1999;1441(2-3):223-8
  • Mercier KA, Shortridge M, Powers R. A multi-step NMR screen for the identification and evaluation of chemical leads for drug discovery. Comb Chem High Throughput Screen 2009;12(3):285-95
  • Powers R, Copeland JC, Germer K, et al. Comparison of protein active site structures for functional annotation of proteins and drug design. Proteins Struct Funct Bioinform 2006;65(1):124-35
  • Mercier Kelly A, Cort John R, Kennedy Michael, et al. Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170). Protein Sci 2009;18(3):606-18
  • Shortridge MD, Powers R. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins. PLoS ONE 2009; submitted
  • Lee GM, Craik CS. Trapping moving targets with small molecules. Science (Washington, DC, US) 2009;324(5924):213-5
  • Boehr DD, McElheny D, Dyson HJ, Wright PE. The dynamic energy landscape of dihydrofolate reductase catalysis. Science (Washington, DC, US) 2006;313(5793):1638-42
  • Mauldin RV, Carroll MJ, Lee AL. Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state. Structure (Cambridge, MA, US) 2009;17(3):386-94
  • Lange OF, Lakomek N-A, Fares C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science (Washington, DC, US) 2008;320(5882):1471-5
  • Teague SJ. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2003;2(7):527-41
  • Moy FJ, Chanda PK, Chen J, et al. Impact of mobility on structure-based drug design for the MMPs. J Am Chem Soc 2002;124(43):12658-9
  • Zintsmaster JS, Wilson BD, Peng JW. Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance. J Am Chem Soc 2008;130(43):14060-1
  • Peng JW. Communication breakdown: protein dynamics and drug design. Structure (Cambridge, MA, US) 2009;17(3):319-20
  • Palmer AG. NMR characterization of the dynamics of biomacromolecules. Chem Rev (Washington, DC, US) 2004;104(8):3623-40
  • Terstappen GC, Schluepen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov 2007;6(11):891-903
  • Strausberg RL, Schreiber SL. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science (Washington, DC, US) 2003;300(5617):294-5
  • Dalvit C, Ardini E, Fogliatto GP, et al. Reliable high-throughput functional screening with 3-FABS. Drug Discov Today 2004;9(14):595-602
  • Bista M, Kowalska K, Janczyk W, et al. Robust NMR screening for lead compounds using tryptophan-containing proteins. J Am Chem Soc 2009;131(22):7500-1
  • D'Silva L, Ozdowy P, Krajewski M, et al. Monitoring the effects of antagonists on protein-protein interactions with NMR spectroscopy. J Am Chem Soc 2005;127(38):13220-6
  • Dalvit C, Fagerness PE, Hadden DTA, et al. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc 2003;125(25):7696-703
  • Moy FJ, Haraki K, Mobilio D, et al. MS/NMR: a structure-based approach for discovering protein ligands and for drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Anal Chem 2001;73(3):571-81
  • Zartler ER, Hanson J, Jones BE, et al. RAMPED-UP NMR: multiplexed NMR-based screening for drug discovery. J Am Chem Soc 2003;125(36):10941-6
  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science (Washington, DC) 1996;274(5292):1531-4
  • Jahnke W, Ruedisser S, Zurini M. Spin label enhanced NMR screening. J Am Chem Soc 2001;123(13):3149-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.