80
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Review of knowledge for rational design and identification of anti-tubercular compounds

&
Pages 1005-1015 | Published online: 07 Sep 2009

Bibliography

  • Kaufmann SH, McMichael AJ. Annulling a dangerous liaison: vaccination strategies aginst AIDS and tuberculosis. Nat Med 2005;11:S33-44
  • WHO. World Health Organization. Factsheet on tuberculosis; 2009
  • Global Alliance for TB Drug Development. Available from: www.tballiance.org
  • Centres for Disease Control and Prevention (CDC). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide, 2000−2004. MMWR 2006;55:301-5
  • Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 2005;45:529-64
  • Mitchison DA. Treatment of tuberculosis. The Mitchell lecture 1979. J R Coll Physicians Lond 1980;14:91-5, 98-99
  • McCune RM Jr, Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 1956;104:737-62
  • O'Brien RJ, Nunn PP. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am J Respir Crit Care Med 2001;163:1055-8
  • McCune RM Jr, McDermott W, Tompsett R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial numeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 1956;104:763-802
  • Clark DW. Genetically determined variability in acetylation and oxidation. Therapeutic implications. Drugs 1985;29:342-75
  • Mitchison DA. Basic mechanisms of chemotherapy. Chest 1979;76:771-81
  • Handwerger S, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Rev Infect Dis 1985;7:368-86
  • Jindani A, Dore CJ, Mitchison DA. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med 2003;167:1348-54
  • Herbert D, Paramasivan CN, Venkatesan P, et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1996;40:2296-9
  • Grosset J, Ji B. Experimental chemotherapy of mycobacterial diseases. Chapman & Hall, New York; 1998
  • Giersiefen H. Modern methods of drug discovery: an introduction. Birkhäuser Verlag: Basel; 2003
  • Guner OF. Pharmacophore perception, development and the use in drug design. IUL Press: La Jolla, CA; 2000
  • Ghose AK, Logan ME, Treasurywala AM, et al. Determination of pharmacophoric geometry for collagenase inhibitors using a novel computational method and its verification using molecular dynamics, NMR, and X-ray crystallography. J Am Chem Soc 1995;117:4671-82
  • Hansch C, Leo A, Hoekman D. Monograph: exploring the QSAR. Hydrophobic, electronic and steric constants. American Chemical Society: Washington, DC; 1995
  • Cramer RD. Topomer CoMFA: a design methodology for rapid lead optimization. J Med Chem 2003;46:374-88
  • Böhm H-J, Schneider G. Virtual screening for bioactive molecules, Wiley-VCH: New York; 2000
  • Klebe G. Virtual screening: an alternative or complement to high throughput screening. Kluwer: Dordrecht; 2000
  • Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002;1:882-94
  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3:935-49
  • Leach AR, Shoichet BK, Peishoff CE. Prediction of protein−ligand interactions. Docking and scoring: successes and gaps. J Med Chem 2006;49:5851-5
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4:649-63
  • Berman HM, Battistuz T, Bhat TN, et al. The Protein data bank. Acta Cryst D 2002;58:899-907
  • Congreve M, Murray CW, Blundell TL. Structural biology and drug discovery. Drug Discov Today 2005;10:895-907
  • Willett P. Similarity and clustering in chemical information systems. Research Studies Press: Letchworth; 1987
  • Sheridan RP, Kearsley SK. Why do we need so many chemical similarity methods? Drug Discov Today 2002;7:903-11
  • Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004;2:3204-18
  • Martin YC. Designing bioactive molecules: three-dimensional techniques and applications. American Chemical Society: Washington; 1998
  • Güner O. Pharmacophore perception, development and use in drug design. International University Line, La Jolla, CA; 2000
  • Martin YC. 3D database searching in drug design. J Med Chem 1992;35:2145-54
  • Whittle PJ, Blundell TL. Protein structure-based drug design. Annu Rev Biophys Biomol Struct 1994;23:349-75
  • Blundell TL. Structure based drug design. Nature 1996;384:23-6
  • Burley SK. An overview of structural genomics. Nat Struct Biol 2000;7:932-4
  • Pieper U, Eswar N, Webb BM, et al. MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 2009;37:D347-54
  • Stover CK, Warrener P, VanDevanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000;405:962-6
  • Ashtekar DR, Costa-Perira R, Nagrajan K, et al. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1993;37:183-6
  • Tucker JA, Allwine DA, Grega KC, et al. Piperazinyl oxazolidinone antibacterial agents containing a pyridine, diazene, or triazene heteroaromatic ring. J Med Chem 1998;41:3727-35
  • Brickner SJ, Hutchinson DK, Barbachyn MR, et al. Synthesis and antibacterial activity of U- 100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J Med Chem 1996;39:673-9
  • Eustice DC, Feldman PA, Zajac I, Slee AM. Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob Agents Chemother 1988;32:1218-22
  • Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex lung disease with a Macrolide, Ethambutol, and Clofazimine. Chest 2003;124:1482-6
  • Kamal A, Babu AH, Ramana AV, et al. Antitubercular agents. Part 1: synthesis of phthalimido- and naphthalimidolinked phenazines as new prototypeantitubercular agents. Bioorg Med Chem Lett 2005;15:1923-6
  • Tangalapally RP, Yendapally R, Lee RE, et al. Synthesis and evaluation of cyclic secondary amine substituted phenyl and benzyl nitrofuranyl amides as novel antituberculosis agents. J Med Chem 2005;48:8261-9
  • Bakkestuen AK, Gundersen LL, Langli G, et al. 9-Benzylpurines with inhibitory activity against mycobacterium tuberculosis. Bioorg Med Chem Lett 2000;10:1207-10
  • Gundersen LL, Meyer JN, Spilsberg B. Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J Med Chem 2002;45:1383-6
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Antimycobacterial activity of 9-sulfonylated sulfenylated-6-mercaptopurine derivatives. Bioorg Med Chem Lett 2001;11:1675-8
  • Shindikar AV, Viswanathan CL. Novel fluoroquinolones: design, synthesis, and in vivo activity in mice against mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 2005;15:1803-6
  • Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of mycobacterium tuberculosis. Science 2005;307:223-7
  • Kamal A, Reddy KS, Ahmed SK, et al. Anti-tubercular agents. Part 3: benzothiadiazines as a novel scaffold for anti-mycobacterim activiy. Bioorg Med Chem 2006;14:650-8
  • Kamal A, Ahmed SK, Reddy KS, et al. Antitubercular agents. Part IV: synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorg Med Chem Lett 2007;17:5419-22
  • Lin TW, Melgar MM, Kurth D, et al. Structure-based inhibitor design of ACCD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006;103:3072-7
  • Nordqvist A, Nilsson MT, Röttger S, et al. Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery. Bioorg Med Chem 2008;16:5501-13
  • Shen H, Wang F, Zhang Y, et al. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis. FEBS J 2009;276:144-54
  • Segura-Cabrera A, Rodríguez-Pérez MA. Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg Med Chem Lett 2008;18:3152-7
  • Cho Y, Ioerger TR, Sacchettini JC. Discovery of novel nitrobenzothiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J Med Chem 2008;51:5984-92
  • Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004;2:3204-18
  • Manetti F, Magnani M, Castagnolo D, et al. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of Mycobacterium tuberculosis. ChemMedChem 2006;1:973-89
  • García-García A, Gálvez J, de Julián-Ortiz JV, et al. Search of chemical scaffolds for novel antituberculosis agents. J Biomol Screen 2005;10:206-14
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3-25
  • Biava M, Porretta GC, Poce G, et al. Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J Med Chem 2006;49:4946-52
  • Agrawal H, Kumar A, Bal NC, et al. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 2007;17:3053-8
  • Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 2002;148:3069-77
  • Hediger ME. Design, synthesis, and evaluation of aza inhibitors of chorismate mutase. Bioorg Med Chem 2004;15:4995-5010
  • Kumar A, Chaturvedi V, Bhatnagar S, et al. Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. J Chem Inf Model 2009;49:35-42
  • Deng Z, Chuaqui C, Singh J. Structural Interaction Fingerprint (SIFt): a novel method for analysing three-dimensional protein-ligand binding interactions. J Med Chem 2004;47:337-44
  • Chuaqui C, Deng Z, Singh J. Interaction profiles of protein kinase inhibitor complexes and their application to virtual screening. J Med Chem 2005;48:121-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.