100
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Advances in quantitative structure–activity relationship models of antioxidants

&
Pages 1157-1175 | Published online: 30 Oct 2009

Bibliography

  • Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007;19:1807-19
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47-95
  • Bayol-Denizot C, Daval J-L, Netter P, Minn A. Xenobiotic-mediated production of superoxide by primary cultures of rat cerebral endothelial cells, astrocytes, and neurons. Biochimica et Biophysica Acta (BBA) Molecular Cell Res 2000;1497:115-26
  • Aust AE. Reactive oxygen/nitrogen species: Generation and reactions in the lung. In: Vallyathan V, CastranovaV, ShiX, editors, Oxygen/Nitrogen Radicals. Vol. 187; New York: Marcel Dekker; 2004
  • VanSteenhouse JL. Free radicals: relation to tissue damage - a review. Vet Clin Pathol 2009;16:29-35
  • Halliwell B. Antioxidant defense mechanisms: from the beginning to the end. Free Radic Res 1999;31:261-72
  • Puizina-Ivic N. Skin aging. Acta Dermatoven APA 2008;17:47-54
  • Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4:89-96
  • Salvador A, Sousa J, Pinto RE. Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment. Free Radic Biol Med 2001;31:1208-15
  • Valko M, Izakovic M, Mazur M, Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004;266:37-56
  • Slater AFG, Stefan C, Nobel I, Orrenius S. The role of intracellular oxidants in apoptosis. Biochem Biophys Acta 1995;1271:59-62
  • Gutteridge JMC, Halliwell B. Antioxidants in nutrition, health and disease. Oxford: Oxford University Press; 1994
  • Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 2001;123:1173-83
  • Vafiadis AP, Bakalbassis EG. A DFT study on the deprotonation antioxidant mechanistic step of ortho-substituted phenolic cation radicals. Chem Phys 2005;316:195-204
  • Musialik M, Litwinienko G. Scavenging of dpph radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 2005;7:4951-4
  • Zhang H-Y, Ji H-F. S–H proton dissociation enthalpies of thiophenolic cation radicals: a DFT study. J Mol Struct (THEOCHEM) 2003;663:167-74
  • Zhang H-Y, Sun Y-M, Wang X-L. Electronic effects on O−H proton dissociation energies of phenolic cation radicals: a DFT Study. J Org Chem 2002;67:2709-12
  • Litwinienko G, Ingold KU. Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph) in alcohols. J Org Chem 2003;68:3433-8
  • Litwinienko G, Ingold KU. Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. J Org Chem 2005;70:8982-90
  • Prasad KN, Hovland AR, Cole WC, Multiple antioxidants in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin Neuropharmacol 2000;23:2-13
  • Aviram M. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 1996;34:599-608
  • Frei B. Cardiovascular disease and nutrient antioxidants: role of low-density lipoprotein oxidation. Crit Rev Food Sci Nutr 1995;35:83-98
  • Mahajan A, Tandon VR. Antioxidants and rheumatoid arthritis. J Indian Rheumatol Assoc 2004;12:139-42
  • Ozawa T. Understanding the Process of Aging. In: Cadenas E, Packer L, editors, New York: Marcel Dekker; 1999
  • Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003;91:179-94
  • Helguera AM, Combes RD, Gonzalez M P, Cordeiro MN. Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 2008;8:1628-55
  • Gonzalez MP, Teran C, Saiz-Urra L, Teijeira M. Variable selection methods in QSAR: an overview. Curr Top Med Chem 2008;8:1606-27
  • Hansch C, Maloney PP, Fujita T, Muir RM. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962;194:178-80
  • Hansch C, Fujita T. ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86:1616-26
  • Fraser A, Burnell D. Computer Models in Genetics; New York: McGraw-Hill; 1970
  • Wold S, Eriksson L. Validation tools. In: van de WaterbeemdH, editor, Chemometric methods in molecular design. Weinheim: VCH; 1995. p. 312–17
  • Snedecor GW, Cochran WG. Statistical methods. New Delhi: Oxford & IBH, 1967
  • Debnath AK. Quantitative structure–activity relationships: a versatile tool in drug design. In: Ghose AK, Viswanadhan VN, editors, Combinatorial library design and evaluation. New York: Marcel Dekker; 2001
  • Roy K. On some aspects of validation of predictive quantitative structure–activity relationship models. Expert Opin Drug Discov 2007;2:567-77
  • Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 2008;27:302-13
  • Roy PP, Paul S, Mitra I, Roy K. On two novel parameters for validation of predictive QSAR models. Molecules 2009;14:1660-701
  • Golbraikh A, Tropsha A. Beware of q2. J Mol Graph Mod 2002;20:269-76
  • Shen M, Beguin C, Golbraikh A, Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem 2004;47:2356-64
  • Melagraki G, Afantitis A, Sarimveis H, Identification of a series of novel derivatives as potent HCV inhibitors by a ligand-based virtual screening optimized procedure. Bioorg Med Chem 2007;15:7237-47
  • Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007;26:694-701
  • Eriksson L, Jaworska J, Worth AP, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs Environ Health Perspect 2003;111:1361-75
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR Models QSAR Comb Sci 2003;22:69-77
  • Kubinyi H. QSAR: Hansch analysis and related approaches. In: Mannhold R, Krogsgaard-Larsen P, Timmerman H, editors, Methods and principles in medicinal chemistry. Weinheim: VCH; 1993
  • Cerius2 Version 4.10. Accelrys Inc.: San Diego, CA. Available from: http://www.accelrys.com/cerius2.
  • Debnath AK. Quantitative structure-activity relationship (QSAR) paradigm −Hansch era to new millennium. Mini Rev Med Chem 2001;1:187-95
  • Hopfinger AJ, Wang S, Tokarski JS, Construction of 3D-QSAR models of prostaglandins using the 4d-qsar analysis formalism. J Am Chem Soc 1997;119:10509-24
  • Vedani A, Briem H, Dobler M, Multiple-conformation and protonation-state representation in 4D-QSAR: The neurokinin-1 receptor system. J Med Chem 2000;43:4416-27
  • Available form: http://www.dddmag.com/qsar-prediction-beyond-the-fourth.aspx. [Last accessed 20 July 2009]
  • Available form: http://www.modeling.unibas.ch/UB_BB2.html. [Last accessed 20 July 2009]
  • Zhou H, Wu X, Yan Y, Studies on relationship between structure and antioxidation property of phenols using QSAR technique. Acta Petrolei Sinica (Petroleum Processing Section) 1999;15:x9-55
  • Cheng Z, Ren J, Li Y, Chang W, Chen Z. Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship; Bioorgan Med. Chem 2002;10:4067-73
  • Cheng Z, Ren J, Li Y, Establishment of a quantitative structure–activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation. J Pharm Sci 2003;92:475-84
  • Singh N, Loader RJ, O’Malley PJ, Popelier PLA. Computation of relative bond dissociation enthalpies (ΔBDE) of phenolic antioxidants from quantum topological molecular similarity (QTMS). J Phys Chem A 2006;110:6498-503
  • Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 2001;123:1173-83
  • Gupta S, Matthew S, Abreu PM, Aires-de-Sousa J. QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Bioorgan Med Chem 2006;14:1199-206
  • Reis M, Lobato B, Lameira J, A theoretical study of phenolic compounds with antioxidant properties. Eur J Med Chem 2007;42:440-6
  • Fleming I. Frontier Orbitals and Organic Chemical Reactions. Chichester: John Wiley & Sons; 1976
  • Danovich D. NDDO semiempirical approximations coupled with Green’s function technique–a reliable approach for calculating ionization potentials. J Mol Struct 1997;401:235-52
  • Velkov ZA, Kolev MK, Tadjer AV. Modeling and statistical analysis of DPPH scavenging activity of phenolics. Collect Czech Chem Commun 2007;72:1461-71
  • Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 1984;80:3265-9
  • Ray S, De K, Sen Gupta C, Roy K. QSAR study of lipid-peroxidation inhibition potential of some phenolic antioxidants. Indian J Biochem Biophys 2008;45:198-205
  • Rastija V, Medic-Saric M. QSAR study of antioxidant activity of wine polyphenols. Eur J Med Chem 2009;44:400-8
  • Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Bio Med 1999;26:285-94
  • Heijnen CGM, Haenen GRMM, Vekemans JAJM, Bast A. Peroxynitrite scavenging of flavonoids. Environ Toxicol Pharmacol 2001;10:199-206
  • Amic D, Davidovic-Amic D, Beslo D, Trinajstic N. Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 2003;76:55-61
  • Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990;186:343-55
  • Farkas O, Jakus J, Héberger K. Quantitative structure – antioxidant activity relationships of flavonoid compounds. Molecules 2004;9:1079-88
  • Estrada E, Quincoces JA, Patlewicz G. Creating molecular diversity from antioxidants in Brazilian propolis. Combination of TOPS-MODE QSAR and virtual structure generation. Mol Divers 2004;8:21-33
  • Estrada E. Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications to the prediction of physical properties of alkanes. J Chem Inf Comput Sci 1996;36:844-9
  • Estrada E. Spectral moments of the edge adjacency matrix of molecular graphs. 2. Molecules containing heteroatoms and QSAR applications. J Chem Inf Comput Sci 1997;37:320-8
  • Estrada E. Spectral moments of the edge adjacency matrix of molecular graphs. 3. Molecules containing cycles. J Chem Inf Comput Sci 1998;38:23-27
  • Ghiotto RCT, Lavarda FC, Ferreira FJB. Antioxidant activity of flavonols. Int J Quantum Chem 2004;97:949-52
  • Rackova L, Firakova S, Kostalova D, Oxidation of liposomal membrane suppressed by flavonoids: quantitative structure–activity relationship. Bioorg Med Chem 2005;13:6477-84
  • Weber KC, Honorio KM, Da Silva SL, Selection of quantum chemical descriptors by chemometric methods in the study of antioxidant activity of flavonoid compounds. Int J Quantum Chem 2005;103:731-7
  • Pannala AS, Chan TS, O’Brien PJ, Rice-Evans CA. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 2001;282:1161-8
  • Zhang H. Theoretical elucidation of structure-activity relationship of flavonoid antioxidants. Sci China (Series B) 1999;42:106-12
  • Zhang HY, Wang LF, Sun YM. Why B-ring is the active center for genistein to scavenge peroxyl radical: a DFT study. Bioorg Med Chem Lett 2003;13:909-11
  • Weber KC, Hon´orio KM, Bruni AT, A partial least squares regression study with antioxidant flavonoid compounds. Struct Chem 2006;17:307-13
  • Ray S, Sengupta C, Roy K. QSAR modeling of antiradical and antioxidant activities of flavonoids using electrotopological state (E-State) atom parameters. Cent Eur J Chem 2007;5:1094-113
  • Pasha FA, Cho SJ, Beg Y, Tripathi YB. Quantum chemical QSAR study of flavones and their radical-scavenging activity. Med Chem Res 2007;16:408-17
  • Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotinab LN, Quinn MT. Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorgan Med Chem 2007;15:1749-70
  • Khlebnikov AI. The frontal polygon method for conformationally flexible molecules. Structure-activity relationship in the series of Baker triazines-dihydrofolate reductase inhibitors. Khim-Farm Zhurn 1997;31:41-8
  • Calgarotto AK, Miotto S, Hono´rio KM, Da Silva ABF, Marangoni S, Silva JL, Comar M Jr, Oliveira KMT, Da Silva SL. A multivariate study on ?avonoid compounds scavenging the peroxynitrite free radical. J Mol Struct (THEOCHEM) 2007;808:25-33
  • Gaussian03 Software- Gaussian Inc., 340 Quinnipiac Street, Bldg 40 Wallingford, CT 06492, USA
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648-52
  • Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure- activity relationships. Free Rad Biol Med 1997;22:749–60
  • Choi JS, Chung HY, Kang SS, The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res 2002;16:232-5
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933-56
  • Dugas AJ Jr, Castaneda-Acosta J, Bonin GC, Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships. J Nat Products 2000;63:327-31
  • Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 1999;26:285-94
  • Durand AC, Farce A, Carato P, Quantitative structure-activity relationships studies of antioxidant hexahydropyridoindoles and flavonoid derivatives. J Enzym Inhib Med Ch 2007;22:556-62
  • Om A, Kim JH. A Quantitative structure-activity relationship model for radicalmscavenging activity of flavonoids. J Med Food 2008;11:29-37
  • Todeschini R, Consonni V, Mannhold R, Handbook of Molecular Descriptors. Wiley-VCH: Weinheim; 2000
  • Ray S, Sengupta C, Roy K. QSAR modeling for lipid peroxidation inhibition potential of flavonoids using topological and structural parameters. Cent Eur J Chem 2008;6:267-76
  • Nakao K, Shimizu R, Kubota H, Quantitative structure-activity analyses of novel hydroxyphenylurea derivatives as antioxidants. Bioorg Med Chem 1998;6:849-68
  • Wavefunction, Inc. 18401 Von Karman Ave., #370, Irvine, CA 92715 USA
  • Ancerewicz J, Migliavacca E, Carrupt PA, Structure–property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radical Bio Med 1998;25:113-20
  • Gaillard P, Carrupt PA, Testa B, Boudon A. Molecular lipophilicity potential, a tool in 3D-QSAR. Method and applications. J Comput Aided Mol Des 1994;8:83-96
  • Soffers AEME, Van Haandel MJH, Boersma MG, Antioxidant activities of carotenoids: Quantitative relationships between theoretical calculations and experimental literature data. Free Rad Res 1999;30:233-40
  • Zoete V, Vezin H, Bailly F, 4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 2. computational and experimental approach of the radical scavenging mechanism. Free Rad Res 2000;32:525-33
  • Vajragupta O, Boonchoong P, Wongkrajang Y. Comparative quantitative structure–activity study of radical. Bioorg Med Chem 2000;8:2617-28
  • Nagpal A, Tiwari M. QSAR analysis of substituted benzylideneacetophenones as lipid peroxidation inhibitors. Asian J Chem 2005;17:1669-77
  • Beltra´n HI, Damian-Zea C, Herna´ndez-Ortega S, Synthesis and characterization of di-phenyl-tinIV-salicyliden-ortho-aminophenols: Analysis of in vitro antitumor/antioxidant activities and molecular structures. J Inorg Biochem 2007;101:1070-85
  • Boschi D, Tron GC, Lazzarato L, NO-Donor Phenols: A New Class of Products Endowed with Antioxidant and Vasodilator Properties. J Med Chem 2006;49:2886-97
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8
  • Zhao M, Li Z, Wu Y, Studies on log P, retention time and QSAR of 2-substituted phenylnitronyl nitroxides as free radical scavengers. Eur J Med Chem 2007;42:955-65
  • Urbani P, Ramunno A, Filosa R, Antioxidant activity of diphenylpropionamide derivatives: Synthesis, biological evaluation and computational analysis. Molecules 2008;13:749-61
  • Samee W, Nunthanavanit P, Ungwitayatorn J. 3D-QSAR Investigation of synthetic antioxidant chromone derivatives by molecular field analysis. Int J Mol Sci 2008;9:235-46
  • Mitra I, Saha A, Roy K. Quantitative structure–activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors. Chem Biol Drug Des 2009;73:526-36
  • Mitra I, Roy K, Saha A. QSAR of antilipid peroxidative activity of substituted benzodioxoles using chemometric tools. J Comput Chem 2009;30:2712-22
  • Prouillac C, Vicendo P, Garrigues JC, Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radical Bio Med 2009;46:1139-48
  • Abreu RMV, Ferreira ICFR, Queiroz MRP. QSAR model for predicting radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes. Eur J Med Chem 2009;44:1952-8
  • Hemmer MC, Steinhauer V, Gasteiger J. Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 1999;19:151-64
  • Roy K, Mitra I, Saha A. Molecular shape analysis of antioxidant and squalene synthase inhibitory activities of aromatic tetrahydro-1,4-oxazine derivatives. Chem Biol Drugs Des 2009;74:507-16
  • Kourounakis AP, Charitos C, Rekka EA, Kourounakis PN. Lipid lowering (hetero) aromatic tetrahydro-1, 4-oxazine derivatives with antioxidant and squalene synthase inhibitory activity. J Med Chem 2008;51:5861-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.