390
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Advances in fragment-based drug discovery platforms

, , , &
Pages 1125-1144 | Published online: 30 Oct 2009

Bibliography

  • Albert JS, Blomberg N, Breeze AL, An Integrated approach to fragment-based lead generation:philosophy, strategy and case studies from astrazenecas drug discovery programmes. Curr Top Med Chem 2007;7:1600-29
  • Alex AA, Flocco MM. Fragment-based drug discovery: what has it achieved so far? Curr Top Med Chem 2007;7:1544-67
  • Chessaria G, Woodhead AJ. From fragment to clinical candidate–a historical perspective. Drug Discov Today 2009;14(13-14):668-75
  • Congreve M, Carr R, Murray C, A 'Rule of Three' for fragment-based lead discovery? Drug Discov Today 2003;8(19):876-80
  • de Kloe GE, Bailey D, Leurs R, de Esch IJP. Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 2009;14(13-14):630-46
  • Erlanson DA, McDowell RS, O’Brien T. Fragment-based drug discovery. J Med Chem 2004;47(14):3463-82
  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007;6(3):211-9
  • Orita M, Ohno K, Niimi T. Two ‘golden ratio’ indices in fragment-based drug discovery. Drug Discov Today 2009;14(5-6):321-8
  • Jencks WP. On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 1981;78(7):6-4050
  • Leach AR, Hann MM, Burrows JN, Griffen EJ. Fragment screening: an introduction. Strucutre-Based Drug Design. In: Hubbard RE, editor, RSC Publishing; 2007. p. 142-72
  • Miranker A, Karplus M. Functionality maps of binding-sites - a multiple copy simultaneous search method. Proteins Struct Funct Genet 1991;11(1):29-34
  • Caflisch A, Miranker A, Karplus M. Multiple copy simultaneous search and construction of ligands in binding-sites - application to inhibitors of hiv-1 aspartic proteinase. J Med Chem 1993;36(15):2142-67
  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996;274(5292):1531-4
  • Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug Discov Today 2009;14(5-6):278-83
  • Carr RA, Congreve M, Murray CW, Rees DC. Fragment-based lead discovery: leads by design. Drug Discov Today 2005;10(14):987-92
  • Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 2001;41(3):856-64
  • Available from: http://www.ttplabtech.com/ [cited]
  • Available from: http://www.matrixtechcorp.com/ [cited]
  • Available from: http://www.innovadyne.com/ [cited]
  • Davies TG, Verdonk ML, Graham B, A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J Mol Biol 2007;367(3):882-94
  • Hartshorn MJ, Murray CW, Cleasby A, Fragment-based lead discovery using x-ray crystallography. J Med Chem 2005;48(2):403-13
  • Tickle I, Sharff A, Vinkovic M, High-throughput protein crystallography and drug discovery. Chem Soc Rev 2004;33(8):558-65
  • Available from: http://pfwww.kek.jp/index.html [cited]
  • Available from: http://www.rigaku.com/index_world.html [cited]
  • Available from: http://smb.slac.stanford.edu/robosync/index.html [cited]
  • Skarzynski T, Thorpe J. Industrial perspective on X-ray data collection and analysis. Acta Crystallogr D Biol Crystallogr 2006;62:102-7
  • Campobasso N. Harnessing fragments in big pharma: examples and processes at GlaxoSmithKline. AstraZeneca, Alderley Park, UK: RSC BMCS Fragments; 2009
  • Yamada Y, Hiraki M, Sasajima K, AR-NE3A, a new macromolecular crystallography beamline for pharmaceutical applications at the photon factory. AIP Conference Proceedings 2009. In press
  • Hiraki M, Watanabe S, pHonda N, High-throughput operation of sample-exchange robots with double tongs at the photon factory beamlines. J Synchrotron Radiat 2008;15:300-3
  • Available from: http://accelrys.com/ [cited]
  • Available from: http://www.ccp4.ac.uk/ [cited]
  • Oldfield TJ. X-LIGAND: an application for the automated addition of flexible ligands into electron density. Acta Crystallogr D Biol Crystallogr 2001;57:696-705
  • Available from: http://www.dectris.com/sites/dectris.html [cited]
  • Miyoshi T, Igarashi N, Matsugaki N, Yamada Y, Hirano K, Hyodo K, Development of an X-ray HARP-FEA detector system for high-throughput protein crystallography. J Synchrotron Radiat 2008;15:281-4
  • Klages J, Coles M, Kessler H. NMR-based screening: a powerful tool in fragment-based drug discovery. Mol Biosyst 2006;2(6-7):319-31
  • Dalvit C, Fagerness PE, Hadden DTA, Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc 2003;125(25):7696-703
  • Tsao DHH, Sutherland AG, Jennings LD, Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 2006;14(23):7953-61
  • Hohwy M, Spadola L, Lundquist B, Novel prostaglandin D synthase inhibitors generated by fragment-based drug design. J Med Chem 2008;51(7):2178-86
  • Lepre CA. Library design for NMR-based screening. Drug Discov Today 2001;6(3):133-40
  • Freire E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 2008;13(19-20):869-74
  • Neumann L, Ritscher A, Muller G, Hafenbradl D. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology. J Comput-Aided Mol Des 2009;23(8):501-11
  • Friesner RA, Murphy RB, Repasky MP, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49(21):6177-96
  • Young T, Abel R, Kim B, Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc Natl Acad Sci USA 2007;104(3):808-13
  • Ekstrom JL, Pauly TA, Carty MD, Structure-activity analysis of the purine binding site of human liver glycogen phosphorylase. Chem Biol 2002;9(8):915-24
  • Neumann T, Junker H-D, Schmidt K, Sekul R. SPR-based fragment screening: advantages and applications. Curr Top Med Chem 2007;7(16):1630-42
  • Williams G. Integrating biophysical methods into fragment-baed screening. San Diego, CA: Fragment-based Lead Discovery Conference; 2008
  • Seth PP, Miyaji A, Jefferson EA, SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J Med Chem 2005;48(23):7099-102
  • Erlanson DA, Braisted AC, Raphael DR, Site-directed ligand discovery. Proc Natl Acad Sci USA 2000;97(17):9367-72
  • Oslob JD, Romanowski MJ, Allen DA, Discovery of a potent and selective aurora kinase inhibitor. Bioorg Med Chem Lett 2008;18(17):4880-4
  • Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today 2004;9(10):430-1
  • Hajduk PJ. Fragment-based drug design: how big is too big? J Med Chem 2006;49(24):6972-6
  • Reynolds CH, Bembenek SD, Tounge BA. The role of molecular size in ligand efficiency. Bioorg Med Chem Lett 2007;17(15):4258-61
  • Reynolds CH, Tounge BA, Bembenek SD. Ligand binding efficiency: trends, physical basis, and implications. J Med Chem 2008;51(8):2432-8
  • Kuntz ID, Chen K, Sharp KA, Kollman PA. The maximal affinity of ligands. Proc Natl Acad Sci USA 1999;96(18):9997-10002
  • Nissink JWM. Simple size-independent measure of ligand efficiency. J Chem Inf Model 2009;49(6):1617-22
  • Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 2009;8(3):203-12
  • Deng Z, Chuaqui C, Singh J. Structural Interaction Fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 2004;47(2):337-44
  • Kelly MD, Mancera RL. Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design. J Chem Inf Comput Sci 2004;44(6):1942-51
  • Mpamhanga CP, Chen B, McLay IM, Willett P. Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model 2006;46(2):686-98
  • Murray CW, Verdonk ML. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comput Aided Mol Des 2002;16(10):741-53
  • Abel R, Young T, Farid R, Berne BJ, Role of the active-site solvent in the thermodynamics of factor xa ligand binding. J Am Chem Soc 2008;130(9):2817-31
  • Thijs B, Ramy F, Woody S. High-energy water sites determine peptide binding affinity and specificty of PDZ domains. Protein Sci 2009;18(8):1609-19
  • Loving K, Salam N, Sherman W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 2009;23(8):541-54
  • Pierce AC, Rao G, Bemis GW. BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, P38, and HIV protease. J Med Chem 2004;47(11):2768-75
  • Jambon M, Imberty A, Delége G, Geourjon C. A new bioinformatic approach to detect common 3D sites in protein structures. Proteins Struct Funct Bioinform 2003;52(2):137-45
  • Ramensky V, Sobol A, Zaitseva N, A novel approach to local similarity of protein binding sites substantially improves computational drug design results. Proteins Struct Funct Bioinform 2007;69:349
  • Schmitt S, Kuhn D, Klebe G. A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 2002;323(2):387-406
  • MOETM (Molecular Operating Environment), Chemical Computing Group Inc, Montreal, Canada
  • Schrödinger package, Schrdinger LLC,New York, NY
  • Moriaud F, Doppelt-Azeroual O, Martin L, Computational fragment-based approach at pdb scale by protein local similarity. J Chem Inform Model 2009;49(2):280-94
  • Nisius B, Rester U. Fragment shuffling: an automated workflow for three-dimensional fragment-based ligand design. J Chem Inf Model 2009;49(5):1211-22
  • Fujitani H, Tanida Y, Ito M, Direct calculation of the binding free energies of FKBP ligands. J Chem Phys 2005;123(8):084108.1-084108.5
  • Tanida Y, Ito MS, Fujitani H. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values. Chem Phys 2007;337(1-3):135-43
  • Artis DR, Lin JJ, Zhang C, Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci USA 2009;106(1):262-7
  • Card GL, Blasdel L, England BP, A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 2005;23(2):201-7
  • Beveridge DL, DiCapua FM. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 1989;18:431-92
  • Kollman P. Free-energy calculations - applications to chemical and biochemical phenomena. Chem Rev 1993;93(7):2395-417
  • Mobley DL, Dill KA. Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure 2009;17(4):489-98
  • Davis AM, St-Gallay SA, Kleywegt GJ. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov Today 2008;13(19-20):831-41
  • Ma BY, Shatsky M, Wolfson HJ, Nussinov R. Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations. Protein Sci 2002;11(2):184-97
  • Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon ligand binding. Proteins Struct Funct Genet 2000;39(3):261-8
  • Gutteridge A, Thornton J. Conformational changes observed in enzyme crystal structures upon substrate binding. J Mol Biol 2005;346(1):21-8
  • Teague SJ. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2003;2(7):527-41
  • Bostrom J, Hogner A, Schmitt S. Do structurally similar ligands bind in a similar fashion? J Med Chem 2006;49(23):6716-25
  • Kim K. Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? J Comput Aided Mol Des 2007;21(8):421-35
  • Huth JR, Park C, Petros AM, Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 2007;70:1-12
  • Hubbard R. Recent lessons in fragment-based discovery. San Diego, CA: Chembridge Healthcare Institute’s Fourth Annual: Fragment-Based Drug Discovery; 2009
  • Kuglstatter A. Impact of fragment screening on the rapid discovery of novel and selective protein kinase inhibitors. San Diego, CA: Chembridge Healthcare Institute’s Fourth Annual: Fragment-Based Drug Discovery; 2009
  • Jiang F, Kim SH. Soft docking - matching of molecular-surface cubes. J Mol Biol 1991;219(1):79-102
  • Knegtel RMA, Kuntz ID, Oshiro CM. Molecular docking to ensembles of protein structures. J Mol Biol 1997;266(2):424-40
  • Huang SY, Zou XQ. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 2007;66(2):399-421
  • Sutherland JJ, Nandigam RK, Erickson JA, Vieth M. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 2007;47(6):2293-302
  • Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49(2):534-53
  • Subramanian J, Sharma S, B-Rao C. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. J Med Chem 2006;49(18):5434-41
  • Ciulli A, Williams G, Smith AG, Probing hot spots at protein−gand binding sites: a fragment-based approach using biophysical methods. J Med Chem 2006;49(16):4992-5000
  • Muzammil S, Armstrong AA, Kang LW, Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. J Virol 2007;81(10):5144-54
  • Niimi T, Orita M, Okazawa-Igarashi M, Design and synthesis of non-peptidic inhibitors for the Syk C-terminal SH2 domain based on structure-based in-silico screening. J Med Chem 2001;44(26):4737-40
  • Siegal G, Ab E, Schultz J. Integration of fragment screening and library design. Drug Discov Today 2007;12(23-24):1032-9
  • Hesterkamp T, Barker J, Davenport A, Whittaker M. Fragment based drug discovery using fluorescence correlation spectroscopy techniques: challenges and solutions. Curr Top Med Chem 2007;7:1582-91
  • Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol 2005;12(2):207-16
  • Wood WJL, Patterson AW, Tsuruoka H, Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J Am Chem Soc 2005;127(44):15521-7
  • Patterson AW, Wood WJL, Ellman JA. Substrate activity screening (SAS): a general procedure for the preparation and screening of a fragment-based non-peptidic protease substrate library for inhibitor discovery. Nat Protocols 2007;2(2):424-33
  • Warr WA. Fragment-based drug discovery. J Comput Aided Mol Des 2009;23(8):453-8
  • Colclough N, Hunter A, Kenny PW, High throughput solubility determination with application to selection of compounds for fragment screening. Bioorg Med Chem 2008;16(13):6611-16
  • Brewer M, Ichihara O, Kirchhoff C, Fragment-Based Drug Discovery: A Practical Approach. In: Zartler ER, editor, Wiley Publishing; 2008. p. 39-62
  • Rees DC, Congreve M, Murray CW, Carr R. Fragment-based lead discovery. Nat Rev Drug Discov 2004;3(8):660-72
  • Thomson Pharma (Copyright © 2009 Thomson Reuters). Available from: http://www.thomson-pharma.com/ [cited]
  • Abad-Zapatero C, Metz JT. Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 2005;10(7):464-9
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007;6(11):881-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.