310
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Building a drug–target network and its applications

, &
Pages 1177-1189 | Published online: 13 Oct 2009

Bibliography

  • Kuhn M, Campillos M, Gonzalez P, Bork P. Large-scale prediction of drug-target relationships. FEBS Lett 2008;582(8):1283-90
  • Yildirim MA, Goh KI, Cusick ME, Drug-target network. Nat Biotechnol 2007;25(10):1119-26
  • Yamanishi Y, Araki M, Gutteridge A, Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24(13):I232-I40
  • Vina D, Uriarte E, Orallo F, Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors. Molecular Pharmaceutics 2009;6(3):825-35
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4(11):682-90
  • Goh KI, Cusick ME, Valle D, The human disease network. Proc Natl Acad Sci USA 2007;104(21):8685-90
  • Campillos M, Kuhn M, Gavin AC, Drug target identification using side-effect similarity. Science 2008;321(5886):263-6
  • Prado-Prado FJ, de la Vega OM, Uriarte E, Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorgan Med Chem 2009;17(2):569-75
  • Gonzalez-Diaz H, Prado-Prado FJ. Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: Multispecies activity models for antifungals. J Comput Chem 2008;29(4):656-67
  • Wang Y, Xiao J, Suzek TO, PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009;37(Web Server issue):W623-33
  • Wishart DS, Knox C, Guo AC, DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36(Database issue):D901-6
  • Seiler KP, George GA, Happ MP, ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res 2008;36(Database issue):D351-9
  • Kanehisa M, Goto S, Hattori M, From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34(Database issue):D354-7
  • Berman HM, Westbrook J, Feng Z, The protein data bank. Nucleic Acids Res 2000;28(1):235-42
  • Boeckmann B, Bairoch A, Apweiler R, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31(1):365-70
  • Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res 2002;30(1):412-5
  • Chen L, Oughtred R, Berman HM, Westbrook J. TargetDB: a target registration database for structural genomics projects. Bioinformatics 2004;20(16):2860-2
  • Gao Z, Li H, Zhang H, PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 2008;9:104
  • Gunther S, Kuhn M, Dunkel M, SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 2008;36(Database issue):D919-22
  • Hanzlik RP, Koen YM, Theertham B, The reactive metabolite target protein database (TPDB)--a web-accessible resource. BMC Bioinformatics 2007;8:95
  • Zhang JX, Huang WJ, Zeng JH, DITOP: drug-induced toxicity related protein database. Bioinformatics 2007;23(13):1710-2
  • Ji ZL, Han LY, Yap CW, Drug Adverse Reaction Target Database (DART): proteins related to adverse drug reactions. Drug Saf 2003;26(10):685-90
  • Database Mt. http://www.symyx.com. MDL information Systems, Inc. 2003
  • Lamb J, Crawford ED, Peck D, The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313(5795):1929-35
  • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002;30(1):207-10
  • Parkinson H, Kapushesky M, Shojatalab M, ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 2007;35(Database issue):D747-50
  • Scherf U, Ross DT, Waltham M, A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000;24(3):236-44
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006;6(10):813-23
  • Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 2009;37(Database issue):D793-6
  • Kuhn M, Mering C, Campillos M, STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008;36(Database issue):D684-8
  • NIMH. http://pdsp.med.unc.edu. NIMH
  • Liu T, Lin Y, Wen X, BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007;35(Database issue):D198-201
  • Stark C, Breitkreutz BJ, Reguly T, BioGRID: a general repository for interaction datasets. Nucleic Acids Research 2006;34:D535-D9
  • Caspi R, Foerster H, Fulcher CA, MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2006;34(Database issue):D511-6
  • Paolini GV, Shapland RH, van Hoorn WP, Global mapping of pharmacological space. Nat Biotechnol 2006;24(7):805-15
  • Keiser MJ, Roth BL, Armbruster BN, Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25(2):197-206
  • Cases M, Mestres J. A chemogenomic approach to drug discovery: focus on cardiovascular diseases. Drug Discov Today 2009;14(9-10):479-85
  • Nagamine N, Sakakibara Y. Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 2007;23(15):2004-12
  • Nagamine N, Shirakawa T, Minato Y, Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoS Comput Biol 2009;5(6):e1000397
  • Xie L, Li J, Xie L, Bourne PE. Drug Discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP Inhibitors. PLoS Comput Biol 2009;5(5): e1000387
  • Dunkel M, Gunther S, Ahmed J, SuperPred: drug classification and target prediction. Nucleic Acids Res 2008;36(Web Server issue):W55-9
  • Li Q, Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics 2007;8:353
  • Nacher JC, Schwartz JM. A global view of drug-therapy interactions. BMC Pharmacol 2008;8:5
  • Braun P, Tasan M, Dreze M, An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 2009;6(1):91-8
  • Bandyopadhyay S, Sharan R, Ideker T. Systematic identification of functional orthologs based on protein network comparison. Genome Res 2006;16(3):428-35
  • Berg J, Lassig M. Local graph alignment and motif search in biological networks. Proc Natl Acad Sci USA 2004;101(41):14689-94
  • Dutkowski J, Tiuryn J. Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics 2007;23(13):I149-I58
  • Guo X, Hartemink AJ. Domain-oriented edge-based alignment of protein interaction networks. Bioinformatics 2009;25(12):I240-I6
  • Kelley BP, Sharan R, Karp RM, Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 2003;100(20):11394-9
  • Li YL, de Ridder D, de Groot MJL, Reinders MJT. Metabolic pathway alignment between species using a comprehensive and flexible similarity measure. Bmc Systems Biology 2008;2:111
  • Matthews LR, Vaglio P, Reboul J, Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res 2001;11(12):2120-6
  • Ogata H, Fujibuchi W, Goto S, Kanehisa M. A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res 2000;28(20):4021-8
  • Sharan R, Ideker T. Modeling cellular machinery through biological network comparison. Nat Biotechnol 2006;24(4):427-33
  • Sharan R, Suthram S, Kelley RM, Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 2005;102(6):1974-9
  • Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003;302(5643):249-55
  • Yu HY, Luscombe NM, Lu HX, Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004;14(6):1107-18
  • Bandyopadhyay S, Sharan R, Ideker T. Systematic identification of functional orthologs based on protein network comparison. Genome Res 2006;16(3):428-35
  • Koyuturk M, Grama A, Szpankowski W. An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 2004;20(Suppl 1):i200-7
  • Frantz S. Playing dirty. Nature 2005;437(7061):942-3
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004;3(4):353-9
  • Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 2005;26(4):178-82
  • Espinoza-Fonseca LM. The benefits of the multi-target approach in drug design and discovery. Bioorg Med Chem 2006;14(4):896-7
  • Hampton T. “Promiscuous” anticancer drugs that hit multiple targets may thwart resistance. Jama-J Am Med Assoc 2004;292(4):419
  • Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol 2006 Feb;16(1):127-36
  • Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol 2005;5(1):3
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today 2004;9(15):641-51
  • Park K, Lee S, Ahn HS, Kim D. Predicting the multi-modal binding propensity of small molecules: towards an understanding of drug promiscuity. Mol Biosyst 2009;5(8):844-53
  • Wermuth CG. Multitargeted drugs: the end of the “one-target-one-disease” philosophy? Drug Discov Today 2004;9(19):826-7
  • Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 2007;3(3):e42
  • Engelen S, Trojan LA, Sacquin-Mora S, Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS Comput Biol 2009;5(1)
  • Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 2007;3(4):e43
  • Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 2007;12(1-2):34-42
  • Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 2005;4(1):71-U10
  • Yeh P, Tschumi AI, Kishony R. Functional classification of drugs by properties of their pairwise interactions. Nat Genet 2006;38(4):489-94
  • Lehar J, Zimmermann GR, Krueger AS, Chemical combination effects predict connectivity in biological systems. Mol Sys Biol 2007;3:80
  • Lehar J, Krueger AS, Avery W, Synergistic drug combinations tend to improve therapeutically relevant selectivity (vol 7, pg 659, 2009). Nat Biotechnol 2009;27(7):1
  • Borisy AA, Elliott PJ, Hurst NW, Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 2003;100(13):7977-82
  • Segre D, DeLuna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat Genet 2005;37(1):77-83
  • Araujo RP, Petricoin EF, Liotta LA. A mathematical model of combination therapy using the EGFR signaling network. Biosystems 2005;80(1):57-69
  • Young DW, Bender A, Hoyt J, Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 2008;4(1):59-68
  • Calvano SE, Xiao W, Richards DR, A network-based analysis of systemic inflammation in humans. Nature 2005;437(7061):1032-7
  • Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 2004;101(9):2981-6
  • Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006;2(9):458-66
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3(8):673-83
  • Banks E, Nabieva E, Chazelle B, Singh M. Organization of physical interactomes as uncovered by network schemas. PLoS Comput Biol 2008;4(10)
  • Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 2005;102(39):13773-8
  • Ravasz E, Somera AL, Mongru DA, Hierarchical organization of modularity in metabolic networks. Science 2002;297(5586):1551-5
  • Royer L, Reimann M, Andreopoulos B, Schroeder M. Unraveling protein networks with power graph analysis. PLoS Comput Biol 2008;4(7)
  • Han S, Kim D. Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways. PLoS Comput Biol 2008;4(8):e1000162
  • Gerstein MB, Bruce C, Rozowsky JS, What is a gene, post-ENCODE? History and updated definition. Genome Res 2007;17(6):669-81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.