163
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Human tumor xenografts and mouse models of human tumors: re-discovering the models

, PhD
Pages 1295-1305 | Published online: 07 Nov 2009

Bibliography

  • Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res 2006;66:3351-4
  • Garber K. Realistic rodents? Debate grows over new mouse models of cancer. J Natl Cancer Inst 2006;98:1176-8
  • Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11:971-81
  • Fiebig HH, Maier A, Burger AM. Clonogenic assay with established human tumor xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 2004;40:802-20
  • Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans. Cancer Biol Ther 2003;2(Suppl 1):S134-9
  • Kashofer K, Tschernatsch MM, Mischinger HJ, The disease relevance of human heptocellular xenograft models: molecular characterization and review of the literature. Cancer Lett 2009;283: in press
  • Troiani T, Schettino C, Martinelli E, The use of xenograft models for the selection of cancer treatment with the EGFR as an example. Crit Rev Oncol Hematol 2008;65:200-11
  • Creighton CJ, Bromberg-White JL, Misek DE, Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identies genes involved in tumor formation. Mol Cancer Res 2005;3:119-29
  • Morimoto AM, Tan N, West K, Gene expression profiling of human colon xenograft tumors following treatment with SU11248, a multitargeted tyrosine kinase inhibitor. Oncogene 2004;23:1618-26
  • Lee H, Lin ECK, Liu L, Smith JW. Gene expression profiling of tumor xenografts: in vivo analysis of organ-specific metastasis. Int J Cancer 2003;107:528-34
  • Lal A, Lash AF, Altschul SF, A public database for gene expression in human cancers. Cancer Res 1999;59:5403-7
  • Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther 2009;85:217-21
  • Tan A, Jimeno A, Rubio-Viqueira B, Hidalgo M. NCI-60 gene set connectivity map (GS-CMAP): connecting pathway-based gene expression profiles for therapeutic efficacy determination. J Clin Oncol 2008;26: abstract 3588
  • Ross DT, Scherf U, Eisen MB, Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000;24:227-35
  • Scherf U, Ross DT, Waltham M, A gene expression database for the molecular pharmacology of cancer. Nature Genet 2000;24:236-44
  • Perou CM, Sorlie T, Elsen MB, Molecular portraits of human breast tumors. Nature 2000;406:747-52
  • Hedenfalk I, Duggan D, Chen Y, Gene-epression profiles in hereditary breast cancer. N Engl J Med 2001;344-539-48
  • Sorlie T, Perou CM, Tibshirani R, Gene expression patterns of breast carcinoma distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869-74
  • van't Veer LJ, Dai H, van de Vijver M, Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6
  • Sortiriou C, Neo SY, McShane LM, Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003;100:10393-8
  • Sorlie T, Tibshirani R, Parker J, Repeated observation opf breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003;100:8418-23
  • Dumeaux V, Borresen-Dale AL, Frantzen JO, Gene expression analyses in breast cancer epidemiology: the Norwegian women and cancer post genome cohort study. Breast Cancer Res 2008;10:1-9
  • Peterson JK, Houghton PJ. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 2004;40:837-44
  • Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protocols 2007;2:247-50
  • Neale G, Su X, Morton CL, Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008;14:4572-83
  • Whiteford CC, Bilke S, Greer BT, Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 2007;67:32-40
  • Houghton PJ, Morton CL, Tucker C, The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007;49:928-40
  • Keir ST, Morton CL, Billups C, Initial testing of VNP40101M (cloretazine) by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;51:439-41
  • Maris JM, Courtright J, Houghton JP, Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;51:42-8
  • Smith MA, Morton CL, Phelps DA, Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;51:34-41
  • Houghton PJ, Morton CL, Kolb EA, Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:799-805
  • Kolb EA, Gorlick R, Houghton PJ, Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:1198-206
  • Lock R, Carol H, Houghton PJ, Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:1181-9
  • Kolb EA, Gorlick R, Houghton PJ, Initial testing (stage 1) of a monoclonal antibody (SCH717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:1190-7
  • Tajbakhsh M, Houghton PJ, Morton CL, Initial testing of cisplatin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:992-1000
  • Houghton PJ, Morton CL, Kolb EA, Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009;53:505-8
  • Maris JM, Courtright J, Houghton PJ, Initial testing of the VEGFR inhibitor AZD217 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:581-7
  • Smith MA, Morton CL, Phelps D, SK-NEP-1 and Rh1 are Ewing family tumor lines. Pediatr Blood Cancer 2008;50:703-6
  • Morton CL, Houghton PJ, Gorlick R, Initial testing of aplidin by the pediatric preclinical testing program. Pediatr Blood Cancer 2009;53:509-12
  • Keshelava N, Houghton PJ, Morton CL, Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer 2009;53:505-8
  • Carol H, Lock R, Houghton PJ, Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009;53: in press
  • Gorlick R, Kolb EA, Houghton PJ, Initial testing (stage 1) of lapatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009;53: in press
  • Sorlie T, Perou CM, Fan C, Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Mol Cancer Ther 2006;5:14-8
  • Keyes KA, Mann L, Cox K, Circulating angiogenic growth factor levels in mice bearing human tumors using luminex multiplex technology. Cancer Chemother Pharmacol 2003;51:321-7
  • Keyes KA, Mann L, Sherman M, LY317615 decreases VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 2004;53:133-40
  • Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 2006;66:3355-9
  • Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer 2007;7:645-58
  • Gutmann DH, Hunter-Schaedle K, Shannon KM. Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 2006;116:847-52
  • Cespedes MV, Casanova I, Parreno M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 2006;8:318-29
  • Gingrich JR, Barrios RJ, Foster BA, Greenberg NM. Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 1999;2:70-5
  • Raghow S, Kuliyev E, Steakley M, Efficacious chemoprevention of primary prostate cancer by flutamide in an authochthonous transgenic model. Cancer Res 2000;60:4093-7
  • Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 2002;62:1370-6
  • Raina K, Blouin M-J, Singh RP, Dietary feeding of silibin inhibits prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2007;67:11083-91
  • Raina K, Rajamanickam S, Singh RP, Stage-specific inhibitory effects and associated mechanisms of silibin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2008;68:6822-30
  • Singh RP, Raina K, Sharma G, Agarwal R. Silibin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res 2008;14:7773-80
  • Zorn CS, Wojno KJ, McCabe MT, 5-aza-2′-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin Cancer Res 2007;13:2136-42
  • Huss WJ, Barrios RJ, Greenberg NM. SU5416 selectively impairs angiogenesis to induce prostate cancer-specific apoptosis. Mol Cancer Ther 2003;2:611-6
  • Stadler WM, Cao D, Vogelzang NJ, A randomized phase II trial of the antiangiogenic agent SU5416 in hormone-refractory prostate cancer. Clin Cancer Res 2004;10:3365-70
  • Isayeva T, Chanda D, Kallman L, Eltoum IEA. Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model. Cancer Res 2007;67:5789-97
  • Isayeva T, Chanda D, Kallman L, Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model. Cancer Res 2007;67:5789-97
  • Bertilaccio MTS, Grioni M, Sutherland BW, Vasculature-targeted tumor necrosis factor-alpha increases the therapeutic index of doxorubicin against prostate cancer. Prostate 2008;68:1105-15
  • Dudley AC, Khan ZA, Shih SC, Calcification of multipotent prostate tumor endothelium. Cancer Cell 2008;14:201-11
  • Said N, Frierson HF, Chernauskas D, The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene 2009;1-12 online
  • Hanahan D. Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985;315:115-22
  • Bergers G, Hanahan D, Coussens LM. 1998. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int J Dev Biol 1998;42:995-1002
  • Hager JH, Hodgson JG, Fridlyand J, Oncogene expression and genetic background influence the frequency of DNA copy number abnormalities in mouse pancreatic islet cell carcinomas. Cancer Res 2004;64:2406-10
  • Du YCN, Lewis BC, Hanahan D, Varmus H. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion. PLos Biol 2007;5:2255-69
  • Bergers G, Song S, Meyer-Morse N, Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003;111:1287-95
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603
  • Song S, Ewald AJ, Stallcup W, PDGFRb+ perivascular progenitor cells in tumors regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005;7:870-9
  • Shojaei F, Singh M, Thompson JD, Ferrara N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA 2008;105:2640-5
  • Sjoblom T, Jones S, Wood LD, The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-74
  • Carter CA, Chen C, Brink C, Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol 2007;59:183-95
  • Pessina A, Albella B, Bayo M, Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci 2003;75:355-67
  • Kurtzberg L, Battle T, Rouleau C, Bone marrow and tumor cell CFU and human tumor xenograft efficacy of non-camptothecin and camptothecin topoisomerase I inhibitors. Mol Cancer Ther 2008;7:3212-22
  • Masubuchi N. A predictive model of human myelotoxicity using five camptothein derivatives and the in vitro colony-forming unit granulocyte/macrophage assay. Clin Cancer Res 2004;10:6722-31
  • Erickson-Miller C. Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother Pharmacol 1997;39:467-72
  • Booth C, Potten CS. The intestine as a model for studying stem-cell behavior. In: Teicher BA. editor, Tumor models in cancer research. Totowa, NJ: Humana Press Inc.; 2002. p. 337-57
  • Zlotnik Y, Patya M, Vanichkin A, Novogrodsky A. Tyrphostins reduce chemotherapy-induced intestinal injury in mice: assessment by a biochemical assay. Br J Cancer 2005;92:294-7
  • Allen JD, van Loevezijn A, Lakhai JM, Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 2002;1:417-25
  • Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990;247:322-4
  • Jacoby RF, Cole CE, Tutsch K, Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of apc mutant min mouse adenomas and selective toxicity against apc mutant embryos. Cancer Res 2000;60:1864-70
  • Okunieff P, Chen Y, Maguire DJ, Huser AK. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 2008;27:363-74
  • Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2007;22:659-61
  • Teicher BA. Acute and chronic in vivo therapeutic resistance. Biochem Pharmacol 2009;77:1665-73
  • Spaeth E, Klopp A, Dembinski J, Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008;15:730-8
  • Tredan O, Ggalmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007;99:1441-54
  • Rashidi B, An Z, Sun FX, Efficacy of intra-hepatectomy 5-FU on recurrence and metastasis of human hepatocellular carcinoma in nude mice. Int J Cancer 2001;91:231-5
  • Hayashi K, Yamauchi K, Yamamoto N, Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res 2007;140:165-70
  • Katz MH, Bouvet M, Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Res 2004;64:1828-33
  • Yang M, Hasegawa S, Jiang P, Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 1998;58:4217-21
  • Yang M, Jiang P, Yamamoto N, Real-time whole-body imaging of an orthotopic metastatic prostate cancer model expressing red fluorescent protein. Prostate 2005;62:374-9
  • Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007;74:72-84
  • Kamb A. What's wrong with our cancer models? Nat Rev Drug Discov 2005;4:161-5
  • Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009;63:517-82
  • Jacob D, Davis J, Fang B. Xenograft tumor models in mice for cancer research, a technical review. Gene Ther Mol Biol 2004;8:213-9
  • Fidler IJ, Kim SJ, Langley RR. The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 2007;101:927-36
  • Hoffman RM. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin Exp Metastasis 2009;26:345-55
  • Hoffman RM. Imaging in mice with fluorescent proteins: from macro to subcellular. Sensors 2008;8:1157-73
  • Hoffman RM. In vivo real-time imaging of nuclear-cytoplasmic dynamics of dormancy, proliferation and death of cancer cells. APMIS 2008;116:716-29
  • Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002;2:1-8
  • Lehmann S, Stiehl DP, Honer M, Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc Natl Acad Sci USA 2009;106:14004-9
  • Monfared P, Winkeler A, Klein M, Noninvasive assessment of E2F-1-mediated transcriptional regulation in vivo. Cancer Res 2008;68:5932-40
  • Jacobs AH, Waerzeggers Y, Klein M, Mutlimodal imaging of neural progenitor cell fate in rodents. Mol Imaging 2008;7:77-91
  • Zhao H, Cui K, Muschenborn A, Wong STC. Progress of engineered antibody-targeted molecular imaging for solid tumors. Mol Med Rep 2008;1:131-4
  • El Hilali N, Rubio N, Blanco J. Different effect of paclitaxel on primary tumor mass, tumor cell contents and metastases for four experimental human prostate tumors expressing luciferase. Clin Cancer Res 2005;11:1253-8
  • Drake JM, Gabriel CL, Henry MD. Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 2005;22:674-84
  • Monsky WL, Carreira CM, Tsuzuki Y, Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 2002;8:1008-13
  • de Lange Davies C, Engesaeter BO, Haug I, Uptake of IgG in osteosarcoma correlates inversely with interstitial fluid pressure, but not with interstitial constituents. Br J Cancer 2001;85:1968-77
  • Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Animal models of bone metastasis. Cancer 2003;97(Suppl 3):748-57
  • Man S, Munoz R, Kerbel RS. On the development of models in mice of advanced visceral metastatic disease for anti-cancer drug testing. Cancer Metastasis Rev 2007;26:737-47
  • Rubio-Viqueira B, Jimeno A, Cusatis G, An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 2006;12:4652-61
  • Jimeno A, Solomon A, Karikari C, A prospective validation of a direct tumor xenograft model in pancreatic ductal adenocarcinoma (PDA). J Clin Oncol 2008;26: abstract 4500
  • Shu Q, Wong KK, Su JM, Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 2008;26:1414-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.