152
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Non-mammalian animal models of Parkinson's disease for drug discovery

, PhD
Pages 165-176 | Published online: 05 Jan 2010

Bibliography

  • Dorsey ER, Constantinescu R, Thompson JP, Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68(5):384-6
  • Katzenschlager R, Head J, Schrag A, Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 2008;71(7):474-80
  • Braak H, Del Tredici K, Rub U, Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24(2):197-211
  • Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79(4):368-76
  • Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004;6:259-80
  • Thomas B, Beal MF. Parkinson's disease. Hum Mol Genet 2007;16(2):R183-94
  • Tan JM, Wong ES, Lim KL. Protein misfolding and aggregation in Parkinson disease. Antioxid Redox Signal 2009;11(9):2119-34
  • Lim KL, Ng CH. Genetic models of Parkinson disease. Biochim Biophys Acta 2009;1792(7):604-15
  • Lu B, Vogel H. Drosophila models of neurodegenerative diseases. Annu Rev Pathol 2009;4:315-42
  • Chesselet MF, Fleming S, Mortazavi F, Meurers B. Strengths and limitations of genetic mouse models of Parkinson's disease. Parkinsonism Relat Disord 2008;14(Suppl 2):S84-7
  • Muqit MM, Feany MB. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 2002;3(3):237-43
  • Lakso M, Vartiainen S, Moilanen AM, Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 2003;86(1):165-72
  • Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science 1998;282(5396):2028-33
  • McDonald PW, Jessen T, Field JR, Blakely RD. Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol 2006;26(4-6):593-618
  • Nass R, Hall DH, Miller DM III, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002;99(5):3264-9
  • Nass R, Miller DM, Blakely RD. C. elegans: a novel pharmacogenetic model to study Parkinson's disease. Parkinsonism Relat Disord 2001;7(3):185-91
  • Kuwahara T, Koyama A, Gengyo-Ando K, Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 2006;281(1):334-40
  • van Ham TJ, Thijssen KL, Breitling R, C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 2008;4(3):e1000027
  • Springer W, Hoppe T, Schmidt E, Baumeister R. A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet 2005;14(22):3407-23
  • Lo Bianco C, Schneider BL, Bauer M, Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc Natl Acad Sci USA 2004;101(50):17510-5
  • Petrucelli L, O'Farrell C, Lockhart PJ, Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002;36(6):1007-19
  • Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson's disease. Hum Gene Ther 2005;16(2):262-70
  • Ved R, Saha S, Westlund B, Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 2005;280(52):42655-68
  • Saha S, Guillily MD, Ferree A, LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 2009;29(29):9210-8
  • Wolozin B, Saha S, Guillily M, Investigating convergent actions of genes linked to familial Parkinson's disease. Neurodegener Dis 2008;5(3-4):182-5
  • Samann J, Hegermann J, von Gromoff E, Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 2009;284(24):16482-91
  • Nass R, Merchant KM, Ryan T. Caenohabditis elegans in Parkinson's disease drug discovery: addressing an unmet medical need. Mol Interv 2008 8(6):284-93
  • Kuwahara T, Koyama A, Koyama S, A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in {alpha}-synuclein transgenic C. elegans. Hum Mol Genet 2008;17(19):2997-3009
  • Hamamichi S, Rivas RN, Knight AL, Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA 2008;105(2):728-33
  • Nass R, Hahn MK, Jessen T, A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J Neurochem 2005;94(3):774-85
  • Cao S, Gelwix CC, Caldwell KA, Caldwell GA. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 2005;25(15):3801-12
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219(4587):979-80
  • Braungart E, Gerlach M, Riederer P, Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings. Neurodegener Dis 2004;1(4-5):175-83
  • Locke CJ, Fox SA, Caldwell GA, Caldwell KA. Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson's disease. Neurosci Lett 2008;439(2):129-33
  • Zhang W, Shin EJ, Wang T, 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J 2006;20(14):2496-511
  • Schapira AH. Neuroprotection and dopamine agonists. Neurology 2002;58(4 Suppl 1):S9-18
  • Kritzer JA, Hamamichi S, McCaffery JM, Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models. Nat Chem Biol 2009;5(9):655-63
  • Coulom H, Birman S. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 2004;24(48):10993-8
  • Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000;404(6776):394-8
  • Whitworth AJ, Theodore DA, Greene JC, Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci USA 2005;102(22):8024-9
  • Wang C, Lu R, Ouyang X, Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 2007;27(32):8563-70
  • Greene JC, Whitworth AJ, Kuo I, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003;100(7):4078-83
  • Clark IE, Dodson MW, Jiang C, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006;441(7097):1162-6
  • Park J, Lee SB, Lee S, Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441(7097):1157-61
  • Yang Y, Gehrke S, Imai Y, Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 2006;103(28):10793-8
  • Meulener M, Whitworth AJ, Armstrong-Gold CE, Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 2005;15(17):1572-7
  • Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 2005;15(17):1578-82
  • Park J, Kim SY, Cha GH, Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 2005;361:133-9
  • Yang Y, Gehrke S, Haque ME, Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 2005;102(38):13670-5
  • Lavara-Culebras E, Paricio N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene 2007;400(1-2):158-65
  • Meulener MC, Xu K, Thomson L, Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci USA 2006;103(33):12517-22
  • Imai Y, Gehrke S, Wang HQ, Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008;27(18):2432-43
  • Liu Z, Wang X, Yu Y, A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA 2008;105(7):2693-8
  • Ng CH, Mok SZ, Koh C, Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 2009;29(36):11257-62
  • Venderova K, Kabbach G, Abdel-Messih E, Leucine-rich repeat kinase interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum Mol Genet 2009;18(22):4390-404
  • Greene JC, Whitworth AJ, Andrews LA, Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum Mol Genet 2005;14(6):799-811
  • Auluck PK, Chan HY, Trojanowski JQ, Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002;295(5556):865-8
  • Klucken J, Shin Y, Masliah E, Hsp70 Reduces alpha-synuclein aggregation and toxicity. J Biol Chem 2004;279(24):25497-502
  • Poole AC, Thomas RE, Andrews LA, The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 2008;105(5):1638-43
  • Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 2008;105(38):14503-8
  • Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 2008;105(32):11364-9
  • Auluck PK, Bonini NM. Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 2002;8(11):1185-6
  • Auluck PK, Meulener MC, Bonini NM. Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 2005;280(4):2873-8
  • Wang D, Qian L, Xiong H, Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci USA 2006;103(36):13520-5
  • Tain LS, Mortiboys H, Tao RN, Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 2009;12(9):1129-35
  • Faust K, Gehrke S, Yang Y, Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 2009;10:109
  • Rohde CB, Zeng F, Gonzalez-Rubio R, Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci USA 2007;104(35):13891-5
  • Zeng F, Rohde CB, Yanik MF. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 2008;8(5):653-6
  • Brokars J. Fly fishing on the brain. Biol-IT World 2002;June. Available from: www.bio-itworld.com/archive/061202/fishing.html
  • Steffan JS, Bodai L, Pallos J, Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413(6857):739-43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.