183
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Characterisation of aptamers for therapeutic studies

, PhD Student, , PhD & , PhD
Pages 1205-1224 | Published online: 29 Aug 2007

Bibliography

  • TUERK C, GOLD L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (1990) 249:505-510.
  • ELLINGTON AD, SZOSTAK JW: In vitro selection of RNA molecules that bind specific ligands. Nature (1990) 346:818-822.
  • COLAS P, COHEN B, JESSEN T et al.: Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature (1996) 380:548-550.
  • HOPPE-SEYLER F, BUTZ K: Peptide aptamers: powerful new tools for molecular medicine. J. Mol. Med. (2000) 78:426-430.
  • ELLINGTON AD, SZOSTAK JW: Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature (1992) 355:850-852.
  • BOCK LC, GRIFFIN LC, LATHAM JA et al.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (1992) 355:564-566.
  • KAWAKAMI J, IMANAKA H, YOKOTA Y et al.: In vitro selection of aptamers that act with Zn2+. J. Inorg. Biochem. (2000) 82:197-206.
  • SASSANFAR M, SZOSTAK JW: An RNA motif that binds ATP. Nature (1993) 364:550-553.
  • HUIZENGA DE, SZOSTAK JW: A DNA aptamer that binds adenosine and ATP. Biochemistry (1995) 34:656-665.
  • CAROTHERS JM, DAVIS JH, CHOU JJ et al.: Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA (2006) 12:567-579.
  • LATO SM, BOLES AR, ELLINGTON AD: In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chem. Biol. (1995) 2:291-303.
  • BURKE DH, HOFFMAN DC, BROWN A et al.: RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem. Biol. (1997) 4:833-843.
  • FAMULOK M, SZOSTAK JW: Selection of functional RNA and DNA molecules from randomized sequences. In: Nucleic Acids and Molecular Biology. Eckstein F, Lilley DMJ (Eds), Springer-Verlag (1993):271-284.
  • BOIZIAU C, DAUSSE E, MISHRA R et al.: Identification of aptamers against the DNA template for in vitro transcription of the HIV-1 TAR element. Antisense Nucleic Acid Drug Dev. (1997) 7:369-380.
  • LE TINEVEZ R, MISHRA RK, TOULME JJ: Selective inhibition of cell-free translation by oligonucleotides targeted to a mRNA hairpin structure. Nucleic Acids Res. (1998) 26:2273-2278.
  • GIVER L, BARTEL DP, ZAPP ML et al.: Selection and design of high-affinity RNA ligands for HIV-1 Rev. Gene (1993) 137:19-24.
  • WEISS S, PROSKE D, NEUMANN M et al.: RNA aptamers specifically interact with the prion protein PrP. J. Virol. (1997) 71:8790-8797.
  • RUCKMAN J, GREEN LS, BEESON J et al.: 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. (1998) 273:20556-20567.
  • SEIWERT SD, STINES NAHREINI T, AIGNER S et al.: RNA aptamers as pathway-specific MAP kinase inhibitors. Chem. Biol. (2000) 7:833-843.
  • ULRICH H, MAGDESIAN MH, ALVES MJ et al.: In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J. Biol. Chem. (2002) 277:20756-20762.
  • TUERK C, MACDOUGAL S, GOLD L: RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA (1992) 89:6988-6992.
  • HICKE BJ, MARION C, CHANG YF et al.: Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem. (2001) 276:48644-48654.
  • HOMANN M, GORINGER HU: Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. (1999) 27:2006-2014.
  • HOMANN M, GORINGER HU: Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest therapeutic “piggy-back” approach. Bioorg. Med. Chem. (2001) 9:2571-2580.
  • GOLD L, POLISKY B, UHLENBECK O et al.: Diversity of oligonucleotide functions. Annu. Rev. Biochem. (1995) 64:763-797.
  • FAMULOK M: Oligonucleotide aptamers that recognize small molecules. Curr. Opin. Struct. Biol. (1999) 9:324-329.
  • FAMULOK M, MAYER G: Aptamers as tools in molecular biology and immunology. Curr. Top Microbiol. Immunol. (1999) 243:123-136.
  • FAMULOK M, BLIND M, MAYER G: Intramers as promising new tools in functional proteomics. Chem. Biol. (2001) 8:931-939.
  • JAYASENA SD: Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. (1999) 45:1628-1650.
  • TOULME JJ, DI PRIMO C, BOUCARD D: Regulating eukaryotic gene expression with aptamers. FEBS Lett. (2004) 567:55-62.
  • NIMJEE SM, RUSCONI CP, SULLENGER BA: Aptamers: an emerging class of therapeutics. Annu. Rev. Med. (2005) 56:555-583.
  • COX JC, RUDOLPH P, ELLINGTON AD: Automated RNA selection. Biotechnol. Prog. (1998) 14:845-850.
  • COX JC, ELLINGTON AD: Automated selection of anti-protein aptamers. Bioorg. Med. Chem. (2001) 9:2525-2531.
  • COX JC, RAJENDRAN M, RIEDEL T et al.: Automated acquisition of aptamer sequences. Comb. Chem. High Throughput Screen. (2002) 5:289-299.
  • COX JC, HAYHURST A, HESSELBERTH J et al.: Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. (2002) 30:E108.
  • BLIND M, GRÄTTINGER M, MAYER G: Nucleic acid biotools: accelerating the discovery of lead compounds. Screen. Trends Drug Discov. (2002) 6:35-37.
  • EULBERG D, BUCHNER K, MAASCH C et al.: Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res. (2005) 33:E45.
  • JELLINEK D, GREEN LS, BELL C et al.: Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry (1995) 34:11363-11372.
  • KUBIK MF, BELL C, FITZWATER T et al.: Isolation and characterization of 2′-fluoro-, 2′-amino-, and 2′-fluoro-/amino-modified RNA ligands to human IFN-γ that inhibit receptor binding. J. Immunol. (1997) 159:259-267.
  • LIN Y, NIEUWLANDT D, MAGALLANEZ A et al.: High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res. (1996) 24:3407-3414.
  • PAGRATIS NC, BELL C, CHANG YF et al.: Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat. Biotechnol. (1997) 15:68-73.
  • BURMEISTER PE, LEWIS SD, SILVA RF et al.: Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. (2005) 12:25-33.
  • FAROKHZAD OC, JON S, KHADEMHOSSEINI A et al.: Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. (2004) 64:7668-7672.
  • NIMJEE SM, RUSCONI CP, HARRINGTON RA et al.: The potential of aptamers as anticoagulants. Trends Cardiovasc. Med. (2005) 15:41-45.
  • BLIND M, KOLANUS W, FAMULOK M: Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc. Natl. Acad. Sci. USA (1999) 96:3606-3610.
  • GERMAN I, BUCHANAN DD, KENNEDY RT: Aptamers as ligands in affinity probe capillary electrophoresis. Anal. Chem. (1998) 70:4540-4545.
  • ROMIG TS, BELL C, DROLET DW: Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J. Chromatogr. B Biomed. Sci. Appl. (1999) 731:275-284.
  • DENG Q, GERMAN I, BUCHANAN D et al.: Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal. Chem. (2001) 73:5415-5421.
  • O'SULLIVAN CK: Aptasensors – the future of biosensing? Anal. Bioanal. Chem. (2002) 372:44-48.
  • CLARK SL, REMCHO VT: Aptamers as analytical reagents. Electrophoresis (2002) 23:1335-1340.
  • TOMBELLI S, MINUNNI M, MASCINI M: Analytical applications of aptamers. Biosens. Bioelectron. (2005) 20:2424-2434.
  • MENGER M, GLOKLER J, RIMMELE M: Application of aptamers in therapeutics and for small-molecule detection. Handb. Exp. Pharmacol. (2006):359-373.
  • BURGSTALLER P, GIROD A, BLIND M: Aptamers as tools for target prioritization and lead identification. Drug Discov. Today (2002) 7:1221-1228.
  • MAYER G, GRÄTTINGER M, BLIND M: Aptamers: multifunctional tools for target validation and drug discovery. Drug Plus Intern. (2003):6-10.
  • GREEN LS, BELL C, JANJIC N: Aptamers as reagents for high-throughput screening. Biotechniques (2001) 30:1094-1096, 1098, 1100 passim.
  • BRODY EN, WILLIS MC, SMITH JD et al.: The use of aptamers in large arrays for molecular diagnostics. Mol. Diagn. (1999) 4:381-388.
  • RIMMELE M: Nucleic acid aptamers as tools and drugs: recent developments. Chembiochem (2003) 4:963-971.
  • CLOAD ST, MCCAULEY TG, KEEFE AD et al.: Properties of therapeutic aptamers. In: The Aptamer Handbook. Klussmann S (Ed.), WILEY-VCH Verlag GmbH & Co, Weinheim (2006):363-416.
  • EYETECHSTUDYGROUP: Preclinical and phase IA clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina (2002) 22:143-152.
  • EYETECHSTUDYGROUP: Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: Phase II study results. Ophthalmology (2003) 110:979-986.
  • NG EW, SHIMA DT, CALIAS P et al.: Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. (2006) 5:123-132.
  • NG EW, ADAMIS AP: Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann. NY Acad. Sci. (2006) 1082:151-171.
  • KLUSSMANN S: A Aptamer Handbook, WICLEY-VCH Verlag GmbH & KGaA Weinheim (2006).
  • SUMIKURA K, YANO K, IKEBUKURO K et al.: Thrombin-binding properties of thrombin aptamer derivatives. Nucleic Acids Symp. Ser. (1997):257-258.
  • DAVIS JT: G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. (2004) 43:668-698.
  • FEDOR MJ: The role of metal ions in RNA catalysis. Curr. Opin. Struct. Biol. (2002) 12:289-295.
  • HANNA R, DOUDNA JA: Metal ions in ribozyme folding and catalysis. Curr. Opin. Chem. Biol. (2000) 4:166-170.
  • HENTZE MW, KUHN LC: Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA (1996) 93:8175-8182.
  • WINKLER WC, COHEN-CHALAMISH S, BREAKER RR: An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA (2002) 99:15908-15913.
  • SUDARSAN N, BARRICK JE, BREAKER RR: Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA (2003) 9:644-647.
  • BREAKER RR: Natural and engineered nucleic acids as tools to explore biology. Nature (2004) 432:838-845.
  • WLOTZKA B, LEVA S, ESCHGFALLER B et al.: In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc. Natl. Acad. Sci. USA (2002) 99:8898-8902.
  • VATER A, KLUSSMANN S: Toward third-generation aptamers: Spiegelmers and their therapeutic prospects. Curr. Opin. Drug Discov. Devel. (2003) 6:253-261.
  • DANIELS DA, SOHAL AK, REES S et al.: Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal. Biochem. (2002) 305:214-226.
  • EULBERG D, KLUSSMANN S: Spiegelmers: biostable aptamers. Chembiochem (2003) 4:979-983.
  • NOLTE A, KLUSSMANN S, BALD R et al.: Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat. Biotechnol. (1996) 14:1116-1119.
  • KLUSSMANN S, NOLTE A, BALD R et al.: Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. (1996) 14:1112-1115.
  • HELMLING S, MAASCH C, EULBERG D et al.: Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc. Natl. Acad. Sci. USA (2004) 101:13174-13179.
  • TANG J, BREAKER RR: Rational design of allosteric ribozymes. Chem. Biol. (1997) 4:453-459.
  • FAMULOK M: Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Ther. (2005) 7:137-143.
  • WHITE R, RUSCONI C, SCARDINO E et al.: Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. (2001) 4:567-573.
  • JAROSCH F, BUCHNER K, KLUSSMANN S: In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res. (2006) 34:E86.
  • GREEN LS, JELLINEK D, BELL C et al.: Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem. Biol. (1995) 2:683-695.
  • O'CONNELL D, KOENIG A, JENNINGS S et al.: Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc. Natl. Acad. Sci. USA (1996) 93:5883-5887.
  • GREEN LS, JELLINEK D, JENISON R et al.: Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry (1996) 35:14413-14424.
  • BURMEISTER PE, WANG C, KILLOUGH JR et al.: 2′-Deoxy purine, 2′-O-methyl pyrimidine (dRmY) aptamers as candidate therapeutics. Oligonucleotides (2006) 16:337-351.
  • HUANG Y, ECKSTEIN F, PADILLA R et al.: Mechanism of ribose 2′-group discrimination by an RNA polymerase. Biochemistry (1997) 36:8231-8242.
  • PADILLA R, SOUSA R: Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res. (1999) 27:1561-1563.
  • KUMAR R, SINGH SK, KOSHKIN AA et al.: The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg. Med. Chem. Lett. (1998) 8:2219-2222.
  • DARFEUILLE F, HANSEN JB, ORUM H et al.: LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res. (2004) 32:3101-3107.
  • SCHMIDT KS, BORKOWSKI S, KURRECK J et al.: Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. (2004) 32:5757-5765.
  • KING DJ, BASSETT SE, LI X et al.: Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-κB RelA(p65) and p50. Biochemistry (2002) 41:9696-9706.
  • GOODCHILD J, AGRAWAL S, CIVEIRA MP et al.: Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA (1988) 85:5507-5511.
  • STEIN CA, SUBASINGHE C, SHINOZUKA K et al.: Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. (1988) 16:3209-3221.
  • DOUGAN H, LYSTER DM, VO CV et al.: Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl. Med. Biol. (2000) 27:289-297.
  • OSTENDORF T, KUNTER U, GRONE HJ et al.: Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. (2001) 12:909-918.
  • MANOHARAN M, TIVEL KL, ROSS B et al.: A 2′-O-thiol tether in the ribose moiety of nucleic acids for conjugation chemistry. Gene (1994) 149:147-156.
  • MANOHARAN M: Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. (2002) 12:103-128.
  • SHEA RG, MARSTERS JC, BISCHOFBERGER N: Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res. (1990) 18:3777-3783.
  • VINOGRADOV SV, SUZDALTSEVA YG, KABANOV AV: Block polycationic oligonucleotide derivative: synthesis and inhibition of herpes virus reproduction. Bioconjug. Chem. (1996) 7:3-6.
  • JONES DS, HACHMANN JP, OSGOOD SA et al.: Conjugates of double-stranded oligonucleotides with poly(ethylene glycol) and keyhole limpet hemocyanin: a model for treating systemic lupus erythematosus. Bioconjug. Chem. (1994) 5:390-399.
  • EATON BE, GOLD L, HICKE BJ et al.: Post-SELEX combinatorial optimization of aptamers. Bioorg. Med. Chem. (1997) 5:1087-1096.
  • EATON BE: The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr. Opin. Chem. Biol. (1997) 1:10-16.
  • LATHAM JA, JOHNSON R, TOOLE JJ: The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. (1994) 22:2817-2822.
  • MENGER M, TUSCHL T, ECKSTEIN F et al.: Mg(2+)-dependent conformational changes in the hammerhead ribozyme. Biochemistry (1996) 35:14710-14716.
  • MENGER M, ECKSTEIN F, PORSCHKE D: Dynamics of the RNA hairpin GNRA tetraloop. Biochemistry (2000) 39:4500-4507.
  • DYKE CK, STEINHUBL SR, KLEIMAN NS et al.: First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a Phase Ia pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation (2006) 114:2490-2497.
  • SANDBERG JA, PARKER VP, BLANCHARD KS et al.: Pharmacokinetics and tolerability of an antiangiogenic ribozyme (ANGIOZYME) in healthy volunteers. J. Clin. Pharmacol. (2000) 40:1462-1469.
  • SCHWENDEMAN SP, COSTANTINO HR, GUPTA RK et al.: Peptide, protein, and vaccine delivery from implantable polymeric systems. Progress and challenges. In: Controlled Drug Delivery: Challenges and Strategies. Park K (Ed.), American Chemical Society, Washington, DC (1997):229-268.
  • SANTULLI-MAROTTO S, NAIR SK, RUSCONI C et al.: Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. (2003) 63:7483-7489.
  • CHOI KH, PARK MW, LEE SY et al.: Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol. Cancer Ther. (2006) 5:2428-2434.
  • RUSS V, WAGNER E: Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm. Res. (2007).
  • MI J, ZHANG X, RABBANI ZN et al.: H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids. Res. (2006) 34:3577-3584.
  • MARTELL RE, NEVINS JR, SULLENGER BA: Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol. Ther. (2002) 6:30-34.
  • AAGAARD L, ROSSI JJ: RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. (2007) 59:75-86.
  • XU L, HUANG CC, HUANG W et al.: Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. (2002) 1:337-346.
  • KURSA M, WALKER GF, ROESSLER V et al.: Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug. Chem. (2003) 14:222-231.
  • CHENG J, TEPLY BA, SHERIFI I et al.: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials (2007) 28:869-876.
  • MCNAMARA JO II, ANDRECHEK ER, WANG Y et al.: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. (2006) 24:1005-1015.
  • GUO S, TSCHAMMER N, MOHAMMED S et al.: Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. (2005) 16:1097-1109.
  • CHU TC, TWU KY, ELLINGTON AD et al.: Aptamer mediated siRNA delivery. Nucleic Acids Res. (2006) 34:E73.
  • CHU TC, MARKS JW III, LAVERY LA et al.: Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res. (2006) 66:5989-5992.
  • HICKE BJ, STEPHENS AW, GOULD T et al.: Tumor targeting by an aptamer. J. Nucl. Med. (2006) 47:668-678.
  • STOJANOVIC MN, KOLPASHCHIKOV DM: Modular aptameric sensors. J. Am. Chem. Soc. (2004) 126:9266-9270.
  • PESTOURIE C, CERCHIA L, GOMBERT K et al.: Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides (2006) 16:323-335.
  • MAYER G, HECKEL A: Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed. Engl. (2006) 45:4900-4921.
  • MODI NB: Pharmacokinetics and metabolism in drug discovery and preclinical development. In: Pharmacokinetics in Drug Discovery and Development. Schoenwald RD (Ed.), CRC Press, New York (2002):57-72.
  • DERENDORF H, GRAMATTE T, SCHÄFER HG: Pharmakokinetik, Wissenschaftliche Verlagsges (2002).
  • GIBALDI M, PERRIER D Pharmacokinetics (Drugs and the Pharmaceutical Sciences), Marcel Dekker Ltd. (2006).
  • VIVES E, BRODIN P, LEBLEU B: A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. (1997) 272:16010-16017.
  • ANTOPOLSKY M, AZHAYEVA E, TENGVALL U et al.: Peptide-oligonucleotide phosphorothioate conjugates with membrane translocation and nuclear localization properties. Bioconjug. Chem. (1999) 10:598-606.
  • ZUBIN EM, ROMANOVA EA, VOLKOV EM et al.: Oligonucleotide-peptide conjugates as potential antisense agents. FEBS Lett. (1999) 456:59-62.
  • YAMAOKA T, TABATA Y, IKADA Y: Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. (1994) 83:601-606.
  • YAMAOKA T, TABATA Y, IKADA Y: Fate of water-soluble polymers administered via different routes. J. Pharm. Sci. (1995) 84:349-354.
  • KAWAGUCHI T, ASAKAWA H, TASHIRO Y et al.: Stability, specific binding activity, and plasma concentration in mice of an oligodeoxynucleotide modified at 5′-terminal with poly(ethylene glycol). Biol. Pharm. Bull. (1995) 18:474-476.
  • REYDERMAN L, STAVCHANSKY S: Quantitative determination of short single-stranded oligonucleotides from blood plasma using capillary electrophoresis with laser-induced fluorescence. Anal. Chem. (1997) 69:3218-3222.
  • REYDERMAN L, STAVCHANSKY S: Pharmacokinetics and biodistribution of a nucleotide-based thrombin inhibitor in rats. Pharm. Res. (1998) 15:904-910.
  • TUCKER CE, CHEN LS, JUDKINS MB et al.: Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl. (1999) 732:203-212.
  • WATSON SR, CHANG YF, O'CONNELL D et al.: Anti-scL/sc-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo Antisense Nucleic Acid Drug Dev. (2000) 10:63-75.
  • CALICETI P, VERONESE FM: Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. (2003) 55:1261-1277.
  • HARRIS JM, CHESS RB: Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. (2003) 2:214-221.
  • BOOMER RM, LEWIS SD, HEALY JM et al.: Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides (2005) 15:183-195.
  • MARRO ML, DANIELS DA, MCNAMEE A et al.: Identification of potent and selective RNA antagonists of the IFN-γ-inducible CXCL10 chemokine. Biochemistry (2005) 44:8449-8460.
  • KWON Y: Handbook of Essential Pharmacokinetics, Pharmacodynamics, and Drug Metabolism for Industrial Scientists, Kluwer Academic/Plemun Publishers, New York (2001).
  • AKIYAMA H, KACHI S, SILVA RL et al.: Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J. Cell Physiol. (2006) 207:407-412.
  • MCCAULEY TG, KURZ JC, MERLINO PG et al.: Pharmacologic and pharmacokinetic assessment of anti-TGFβ2 aptamers in rabbit plasma and aqueous humor. Pharm. Res. (2006) 23:303-311.
  • HEALY JM, LEWIS SD, KURZ M et al.: Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. (2004) 21:2234-2246.
  • YU RZ, BAKER B, CHAPPELL A et al.: Development of an ultrasensitive noncompetitive hybridization-ligation enzyme-linked immunosorbent assay for the determination of phosphorothioate oligodeoxynucleotide in plasma. Anal. Biochem. (2002) 304:19-25.
  • ANDREWS CL, VOUROS P, HARSCH A: Analysis of DNA adducts using high-performance separation techniques coupled to electrospray ionization mass spectrometry. J. Chromatogr. A (1999) 856:515-526.
  • ONO T, SCALF M, SMITH LM: 2′-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. (1997) 25:4581-4588.
  • JOSHI PJ, FISHER TS, PRASAD VR: Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals. Curr. Drug Targets Infect. Disord. (2003) 3:383-400.
  • NICKENS DG, PATTERSON JT, BURKE DH: Inhibition of HIV-1 reverse transcriptase by RNA aptamers in Escherichia coli. RNA (2003) 9:1029-1033.
  • THEIS MG, KNORRE A, KELLERSCH B et al.: Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc. Natl. Acad. Sci. USA (2004) 101:11221-11226.
  • STEIN CA: The experimental use of antisense oligonucleotides: a guide for the perplexed. J. Clin. Invest. (2001) 108:641-644.
  • CASSIDAY LA, MAHER LJ III: In vivo recognition of an RNA aptamer by its transcription factor target. Biochemistry (2001) 40:2433-2438.
  • VOLK DE, YANG X, FENNEWALD SM et al.: Solution structure and design of dithiophosphate backbone aptamers targeting transcription factor NF-κB. Bioorg. Chem. (2002) 30:396-419.
  • ANWAR A, ALI N, TANVEER R et al.: Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J. Biol. Chem. (2000) 275:34231-34235.
  • MAYER G, BLIND M, NAGEL W et al.: Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proc. Natl. Acad. Sci. USA (2001) 98:4961-4965.
  • KIMOTO M, SHIROUZU M, MIZUTANI S et al.: Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation. Eur. J. Biochem. (2002) 269:697-704.
  • MOSING RK, MENDONSA SD, BOWSER MT: Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. (2005) 77:6107-6112.
  • JING N, RANDO RF, POMMIER Y et al.: Ion selective folding of loop domains in a potent anti-HIV oligonucleotide. Biochemistry (1997) 36:12498-12505.
  • JING N, HOGAN ME: Structure–activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J. Biol. Chem. (1998) 273:34992-34999.
  • CHOU SH, CHIN KH, WANG AH: DNA aptamers as potential anti-HIV agents. Trends Biochem. Sci. (2005) 30:231-234.
  • HELD DM, KISSEL JD, PATTERSON JT et al.: HIV-1 inactivation by nucleic acid aptamers. Front. Biosci. (2006) 11:89-112.
  • FUKUDA K, VISHINUVARDHAN D, SEKIYA S et al.: Specific RNA aptamers to NS3 protease domain of hepatitis C virus. Nucleic Acids Symp. Ser. (1997):237-238.
  • FUKUDA K, VISHNUVARDHAN D, SEKIYA S et al.: Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur. J. Biochem. (2000) 267:3685-3694.
  • NISHIKAWA F, KAKIUCHI N, FUNAJI K et al.: Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res. (2003) 31:1935-1943.
  • NISHIKAWA F, FUNAJI K, FUKUDA K et al.: In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides (2004) 14:114-129.
  • URVIL PT, KAKIUCHI N, ZHOU DM et al.: Selection of RNA aptamers that bind specifically to the NS3 protease of hepatitis C virus. Eur. J. Biochem. (1997) 248:130-138.
  • BELLECAVE P, ANDREOLA ML, VENTURA M et al.: Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides (2003) 13:455-463.
  • BIROCCIO A, HAMM J, INCITTI I et al.: Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. (2002) 76:3688-3696.
  • WHITE RR, SHAN S, RUSCONI CP et al.: Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc. Natl. Acad. Sci. USA (2003) 100:5028-5033.
  • RUSCONI CP, YEH A, LYERLY HK et al.: Blocking the initiation of coagulation by RNA aptamers to factor VIIa. Thromb. Haemost. (2000) 84:841-848.
  • RUSCONI CP, SCARDINO E, LAYZER J et al.: RNA aptamers as reversible antagonists of coagulation factor IXa. Nature (2002) 419:90-94.
  • WIEGAND TW, WILLIAMS PB, DRESKIN SC et al.: High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immunol. (1996) 157:221-230.
  • RHODES A, DEAKIN A, SPAULL J et al.: The generation and characterization of antagonist RNA aptamers to human oncostatin M. J. Biol. Chem. (2000) 275:28555-28561.
  • RHODES A, SMITHERS N, CHAPMAN T et al.: The generation and characterisation of antagonist RNA aptamers to MCP-1. FEBS Lett. (2001) 506:85-90.
  • RUSCONI CP, ROBERTS JD, PITOC GA et al.: Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. (2004) 22:1423-1428.
  • TSAI DE, KEENE JD: In vitro selection of RNA epitopes using autoimmune patient serum. J. Immunol. (1993) 150:1137-1145.
  • DOUDNA JA, CECH TR, SULLENGER BA: Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc. Natl. Acad. Sci. USA (1995) 92:2355-2359.
  • LEE SW, SULLENGER BA: Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes. J. Exp. Med. (1996) 184:315-324.
  • LEE SW, SULLENGER BA: Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotechnol. (1997) 15:41-45.
  • HWANG B, HAN K, LEE SW: Prevention of passively transferred experimental autoimmune myasthenia gravis by an in vitro selected RNA aptamer. FEBS Lett. (2003) 548:85-89.
  • KIM YM, CHOI KH, JANG YJ et al.: Specific modulation of the anti-DNA autoantibody-nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. (2003) 300:516-523.
  • CUNNINGHAM ET Jr, ADAMIS AP, ALTAWEEL M et al.: A Phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology (2005) 112:1747-1757.
  • SIDDIQUI MA, KEATING GM: Pegaptanib: in exudative age-related macular degeneration. Drugs (2005) 65:1571-1577; discussion 1578-1579.
  • NG EW, ADAMIS AP: Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can. J. Ophthalmol. (2005) 40:352-368.
  • LEE JH, CANNY MD, DE ERKENEZ A et al.: A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc. Natl. Acad. Sci. USA (2005) 102:18902-18907.
  • QUE-GEWIRTH NS, SULLENGER BA: Gene therapy progress and prospects: RNA aptamers. Gene Ther. (2007) 14:283-291.
  • DANIELS DA, CHEN H, HICKE BJ et al.: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA (2003) 100:15416-15421.
  • CERCHIA L, DUCONGE F, PESTOURIE C et al.: Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. (2005) 3:E123.
  • VANT-HULL B, PAYANO-BAEZ A, DAVIS RH et al.: The mathematics of SELEX against complex targets. J. Mol. Biol. (1998) 278:579-597.
  • FERREIRA CS, MATTHEWS CS, MISSAILIDIS S: DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. (2006) 27:289-301.
  • CHEN CH, CHERNIS GA, HOANG VQ et al.: Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA (2003) 100:9226-9231.
  • LUPOLD SE, HICKE BJ, LIN Y et al.: Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. (2002) 62:4029-4033.
  • KHATI M, SCHUMAN M, IBRAHIM J et al.: Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J. Virol. (2003) 77:12692-12698.
  • JENISON RD, JENNINGS SD, WALKER DW et al.: Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion. Antisense Nucleic Acid Drug Dev. (1998) 8:265-279.
  • KRAUS E, JAMES W, BARCLAY AN: Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol. (1998) 160:5209-5212.
  • HICKE BJ, WATSON SR, KOENIG A et al.: DNA aptamers block L-selectin function in vivo. inhibition of human lymphocyte trafficking in SCID mice. J. Clin. Invest. (1996) 98:2688-2692.
  • ROSSI JJ: Partnering aptamer and RNAi technologies. Mol. Ther. (2006) 14:461-462.
  • FAROKHZAD OC, KARP JM, LANGER R: Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. (2006) 3:311-324.
  • GINSBERG JA, CROWTHER MA, WHITE RH et al.: Anticoagulation therapy. Hematol. Am. Soc. Hematol. Educ. Program (2001):339-357.
  • HECKEL A, MAYER G: Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. J. Am. Chem. Soc. (2005) 127:822-823.
  • MAYER G, KROCK L, MIKAT V et al.: Light-induced formation of G-quadruplex DNA secondary structures. Chembiochem (2005) 6:1966-1970.
  • HECKEL A, BUFF MC, RADDATZ MS et al.: An anticoagulant with light-triggered antidote activity. Angew. Chem. Int. Ed. Engl. (2006) 45:6748-6750.
  • BLANK M, BLIND M: Aptamers as tools for target validation. Curr. Opin. Chem. Biol. (2005) 9:336-342.
  • BEREZOVSKI M, DRABOVICH A, KRYLOVA SM et al.: Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. (2005) 127:3165-3171.
  • BRODY EN, GOLD L: Aptamers as therapeutic and diagnostic agents. J. Biotechnol. (2000) 74:5-13.
  • MIELE E, MARKOWITZ JE, MAMULA P et al.: Human antichimeric antibody in children and young adults with inflammatory bowel disease receiving infliximab. J. Pediatr. Gastroenterol. Nutr. (2004) 38:502-508.
  • DEY AK, KHATI M, TANG M et al.: An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction. J. Virol. (2005) 79:13806-13810.
  • CHAN R, GILBERT M, THOMPSON KM et al.: Co-expression of anti-NF-κB RNA aptamers and siRNAs leads to maximal suppression of NF-κB activity in mammalian cells. Nucleic Acids Res. (2006) 34:E36.
  • HICKE BJ, STEPHENS AW: Escort aptamers: a delivery service for diagnosis and therapy. J. Clin. Invest. (2000) 106:923-928.
  • LISZIEWICZ J, SUN D, SMYTHE J et al.: Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc. Natl. Acad. Sci. USA (1993) 90:8000-8004.
  • TUERK C, MACDOUGAL-WAUGH S: In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Gene (1993) 137:33-39.
  • KENSCH O, CONNOLLY BA, STEINHOFF HJ et al.: HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J. Biol. Chem. (2000) 275:18271-18278.
  • ALLEN P, WORLAND S, GOLD L: Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. Virology (1995) 209:327-336.
  • KARPUSAS M, LUCCI J, FERRANT J et al.: Structure of CD40 ligand in complex with the Fab fragment of a neutralizing humanized antibody. Structure (2001) 9:321-329.
  • JEON SH, KAYHAN B, BEN-YEDIDIA T et al.: A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J. Biol. Chem. (2004) 279:48410-48419.
  • MISONO TS, KUMAR PK: Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. (2005) 342:312-317.
  • SAYER NM, CUBIN M, RHIE A et al.: Structural determinants of conformationally selective, prion-binding aptamers. J. Biol. Chem. (2004) 279:13102-13109.
  • RHIE A, KIRBY L, SAYER N et al.: Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J. Biol. Chem. (2003) 278:39697-39705.
  • BINKLEY J, ALLEN P, BROWN DM et al.: RNA ligands to human nerve growth factor. Nucleic Acids Res. (1995) 23:3198-3205.
  • PROSKE D, HOFLIGER M, SOLL RM et al.: A Y2 receptor mimetic aptamer directed against neuropeptide Y. J. Biol. Chem. (2002) 277:11416-11422.
  • NIEUWLANDT D, WECKER M, GOLD L: In vitro selection of RNA ligands to substance P. Biochemistry (1995) 34:5651-5659.
  • TASSET DM, KUBIK MF, STEINER W: Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. (1997) 272:688-698.
  • GAL SW, AMONTOV S, URVIL PT et al.: Selection of a RNA aptamer that binds to human activated protein C and inhibits its protease function. Eur. J. Biochem. (1998) 252:553-562.
  • NOBILE V, RUSSO N, HU G et al.: Inhibition of human angiogenin by DNA aptamers: nuclear colocalization of an angiogenin-inhibitor complex. Biochemistry (1998) 37:6857-6863.
  • WILLIAMS KP, LIU XH, SCHUMACHER TN et al.: Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. USA (1997) 94:11285-11290.
  • BLANK M, WEINSCHENK T, PRIEMER M et al.: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. (2001) 276:16464-16468.
  • SMITH D, KIRSCHENHEUTER GP, CHARLTON J et al.: In vitro selection of RNA-based irreversible inhibitors of human neutrophil elastase. Chem. Biol. (1995) 2:741-750.
  • BRIDONNEAU P, CHANG YF, O'CONNELL D et al.: High-affinity aptamers selectively inhibit human nonpancreatic secretory phospholipase A2 (hnps-PLA2). J. Med. Chem. (1998) 41:778-786.
  • BIESECKER G, DIHEL L, ENNEY K et al.: Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology (1999) 42:219-230.
  • MI J, ZHANG X, GIANGRANDE PH et al.: Targeted inhibition of avβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun. (2005) 338:956-963.
  • LORGER M, ENGSTLER M, HOMANN M et al.: Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot. Cell (2003) 2:84-94.
  • GIRVAN AC, TENG Y, CASSON LK et al.: AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. (2006) 5:1790-1799.
  • LABER DA, TAFT BS, KLOECKER GH et al.: Extended Phase I study of AS1411 in renal and non-small cell lung cancers. J. Clin. Oncol. (2006) 24:13098.
  • LEE TC, SULLENGER BA, GALLARDO HF et al.: Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol. (1992) 4:66-74.
  • KOHN DB, BAUER G, RICE CR et al.: A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood (1999) 94:368-371.
  • FISHER TS, JOSHI P, PRASAD VR: HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res. Ther. (2005) 2:8.

Patent

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.