105
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Applying transcriptomic and proteomic knowledge to Parkinson's disease drug discovery

, PhD, , PhD, & , PhD
Pages 1225-1240 | Published online: 29 Aug 2007

Bibliography

  • DAUER W, PRZEDBORSKI S: Parkinson's disease: mechanisms and models. Neuron (2003) 39(6):889-909.
  • JELLINGER KA: Recent developments in the pathology of Parkinson's disease. J. Neural Transm. Suppl. (2002) (62):347-376.
  • SPILLANTINI MG, SCHMIDT ML, LEE VM et al.: α-Synuclein in Lewy bodies. Nature (1997) 388(6645):839-840.
  • SCHAPIRA AH, COOPER JM, DEXTER D et al.: Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. (1990) 54(3):823-827.
  • MCNAUGHT KS, JENNER P: Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett. (2001) 297(3):191-194.
  • GOTZ ME, KUNIG G, RIEDERER P, YOUDIM MB: Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. (1994) 63(1):37-122.
  • YOUDIM MBH, RIEDERER P: Understanding Parkinson's disease. The smoking gun is still missing, but growing evidence suggests highly reactive substances called free radicals are central players in this common neurological disorder. Sci. Am. (1997) 276(1):52-59.
  • JENNER P, OLANOW CW: Oxidative stress and the pathogenesis of Parkinson's disease. Neurology (1996) 47(6 Suppl. 3):S161-S170.
  • VAN DER SCHYF CJ, GELDENHUYS WJ, YOUDIM MB: Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J. Neurochem. (2006) 99(4):1033-1048.
  • GRUNBLATT E, MANDEL S, JACOB-HIRSCH J et al.: Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm. (2004) 111(12):1543-1573.
  • KAMURA T, KOEPP DM, CONRAD MN et al.: Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science (1999) 284(5414):657-661.
  • LIANI E, EYAL A, AVRAHAM E et al.: Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease. Proc. Natl. Acad. Sci. USA (2004) 101(15):5500-5505.
  • ZHANG J, GOODLETT DR: Proteomic approach to studying Parkinson's disease. Mol. Neurobiol. (2004) 29(3):271-288.
  • MEREDITH GE, HALLIDAY GM, TOTTERDELL S: A critical review of the development and importance of proteinaceous aggregates in animal models of Parkinson's disease: new insights into Lewy body formation. Parkinsonism Relat. Disord. (2004) 10(4):191-202.
  • EPSTEIN AC, GLEADLE JM, MCNEILL LA et al.: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell (2001) 107(1):43-54.
  • OSTREROVA-GOLTS N, PETRUCELLI L, HARDY J et al.: The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. (2000) 20(16):6048-6054.
  • TURNBULL S, TABNER BJ, EL-AGNAF OM et al.: α-Synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radic. Biol. Med. (2001) 30(10):1163-1170.
  • MILLER RM, KISER GL, KAYSSER-KRANICH TM et al.: Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease. Neurobiol. Dis. (2006) 21(2):305-313.
  • PALOP JJ, CHIN J, MUCKE L: A network dysfunction perspective on neurodegenerative diseases. Nature (2006) 443(7113):768-773.
  • MORAN LB, DUKE DC, DEPREZ M et al.: Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease. Neurogenetics (2006) 7(1):1-11.
  • ZHANG Y, JAMES M, MIDDLETON FA, DAVIS RL: Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2005) 137(1):5-16.
  • HAUSER MA, LI YJ, XU H et al.: Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch. Neurol. (2005) 62(6):917-921.
  • DUKE DC, MORAN LB, KALAITZAKIS ME et al.: Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease. Neurogenetics (2006) 7(3):139-148.
  • RAVINA BM, FAGAN SC, HART RG et al.: Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology (2003) 60(8):1234-1240.
  • YOUDIM MBH, GROSS A, FINBERG JPM: Rasagiline [N-Propargyl-1R(+)-aminoindant], A selective and potent inhibitor of mitochondrial monoamine oxidase B. Br. J. Pharmacol. (2001) 132:500-506.
  • RASCOL O, BROOKS DJ, MELAMED E et al.: Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet (2005) 365(9463):947-954.
  • GROUP PS: A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch. Neurol. (2004) 61(4):561-566.
  • BIGLAN KM, SCHWID S, EBERLY S et al.: Rasagiline improves quality of life in patients with early Parkinson's disease. Mov. Disord. (2006) 21(5):616-623.
  • RABEY JM, SAGI I, HUBERMAN M et al.: Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson's disease: a double-blind study as adjunctive therapy to levodopa. Clin. Neuropharmacol. (2000) 23(6):324-330.
  • STUDY GROUP: Early rasagiline therapy shows long-term benefit for Parkinson's disease. 9th International Congress of Parkinson's Disease and Movement Disorder. New Orleans, USA (2005).
  • MARUYAMA W, YOUDIM MBH, NAOI M: Antiapoptotic properties of rasagiline, N-propargylamine-1 (R)-aminoindan, and its optical (S)-isomer, TV1022. Ann. NY Acad. Sci. (2001) 939:320-329.
  • MARUYAMA W, AKAO Y, YOUDIM MBH et al.: Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J. Neurochem. (2001) 78:727-735.
  • AKAO Y, MARUYAMA W, SHIMIZU S et al.: Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and Rasagiline, N-propargyl-1(R)-aminoindan. J. Neurochem. (2002) 82(4):913-923.
  • BLANDINI F, ARMENTERO MT, FANCELLU R, BLAUGRUND E, NAPPI G: Neuroprotective effect of rasagiline in a rodent model of Parkinson's disease. Exp. Neurol. (2004) 187(2):455-459.
  • KUPSCH A, SAUTTER J, GOTZ ME et al.: Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J. Neural Transm. (2001) 108(8-9):985-1009.
  • BAR-AM O, WEINREB O, AMIT T, YOUDIM MB: Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J. (2005) 19(13):1899-1901.
  • SAGI Y, MANDEL S, AMIT T, YOUDIM MB: Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol. Dis. (2007) 25(1):35-44.
  • SEMKOVA I, WOLZ P, SCHILLING M, KRIEGLSTEIN J: Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur. J. Pharmacol. (1996) 315(1):19-30.
  • TATTON WG, CHALMERS-REDMAN RM, JU WJ et al.: Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J. Pharmacol. Exp. Ther. (2002) 301(2):753-764.
  • MARUYAMA W, NITTA A, SHAMOTO-NAGAI M et al.: N-propargyl-1(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem. Int. (2004) 44(6):393-400.
  • WEINREB O, BAR-AM O, AMIT T, CHILLAG-TALMOR O, YOUDIM MBH: Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J. (2004) 18(12):1471-1473.
  • YOUDIM MB, BUCCAFUSCO JJ: Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. (2005) 26(1):27-35.
  • ZHENG H, WEINER LM, BAR-AM O et al.: Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases. Bioorg. Med. Chem. (2005) 13(3):773-783.
  • WEINSTOCK M, BEJAR C, WANG RH et al.: TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer's disease. J. Neural Transm. (2000) 60(Suppl.):S157-S170.
  • FURLAN R, KURNE A, BERGAMI A et al.: A nitric oxide releasing derivative of flurbiprofen inhibits experimental autoimmune encephalomyelitis. J. Neuroimmunol. (2004) 150(1-2):10-19.
  • CHABRIER PE, AUGUET M, SPINNEWYN B et al.: BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc. Natl. Acad. Sci. USA (1999) 96(19):10824-10829.
  • BEN-SHACHAR D, KAHANA N, KAMPEL V, WARSHAWSKY A, YOUDIM MBH: Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology (2004) 46(2):254-263.
  • SOFIC E, PAULUS W, JELLINGER K, RIEDERER P, YOUDIM MBH: Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J. Neurochem. (1991) 56(3):978-982.
  • RIEDERER P, SOFIC E, RAUSCH WD et al.: Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. (1989) 52(2):515-520.
  • BERG D: In vivo detection of iron and neuromelanin by transcranial sonography – a new approach for early detection of substantia nigra damage. J. Neural Transm. (2006) 113(6):775-780.
  • KAUR D, YANTIRI F, RAJAGOPALAN S et al.: Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron (2003) 37(6):899-909.
  • BEN-SHACHAR D, ESHEL G, FINBERG JP, YOUDIM MB: The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J. Neurochem. (1991) 56(4):1441-1444.
  • GAL S, ZHENG H, FRIDKIN M, YOUDIM MB: Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J. Neurochem. (2005) 95(1):79-88.
  • AVRAMOVICH-TIROSH Y, AMIT T, BAR-AM O et al.: Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer's disease. J. Neurochem. (2007) 100(2):490-502.
  • MARUYAMA W, TAKAHASHI T, YOUDIM MBH, NAOI M: The anti-parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J. Neural Transm. (2002) 109(4):467-481.
  • YOUDIM MB, BAR AM O, YOGEV-FALACH M et al.: Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J. Neurosci. Res. (2005) 79(1-2):172-179.
  • AKAO Y, MARUYAMA W, YI H et al.: An anti-Parkinson's disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic Bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci. Lett. (2002) 326(2):105-108.
  • YOUDIM MB, AMIT T, BAR-AM O, WEINREB O, YOGEV-FALACH M: Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective–neurorescue drugs; ladostigil. Neurotox. Res. (2006) 10(3-4):181-192.
  • MARUYAMA W, WEINSTOCK M, YOUDIM MBH, NAGAI Y, NAOI M: Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci. Lett. (2003) 341(3):233-236.
  • BAUM L, NG A: Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models. J. Alzheimers Dis. (2004) 6(4):367-377; discussion 443-449.
  • GUO Q, ZHAO B, LI M, SHEN S, XIN W: Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta (1996) 1304(3):210-222.
  • JIAO Y, WILKINSON JT, CHRISTINE PIETSCH E et al.: Iron chelation in the biological activity of curcumin. Free Radic. Biol. Med. (2006) 40(7):1152-1160.
  • KUMAMOTO M, SONDA T, NAGAYAMA K, TABATA M: Effects of pH and metal ions on antioxidative activities of catechins. Biosci. Biotechnol. Biochem. (2001) 65(1):126-132.
  • DAI Q, BORENSTEIN AR, WU Y, JACKSON JC, LARSON EB: Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am. J. Med. (2006) 119(9):751-759.
  • EHRNHOEFER DE, DUENNWALD M, MARKOVIC P et al.: Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. (2006) 15(18):2743-2751.
  • JOSEPH JA, SHUKITT-HALE B, CASADESUS G: Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. (2005) 81(1 Suppl.):S313-S316.
  • MAHER P, AKAISHI T, ABE K: Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. USA (2006) 103(44):16568-16573.
  • MANDEL SA, AVRAMOVICH-TIROSH Y, REZNICHENKO L et al.: Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals (2005) 14(1-2):46-60.
  • WANG ZY, HUANG MT, LOU YR et al.: Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res. (1994) 54(13):3428-3455.
  • YANG CS, WANG ZY: Tea and cancer. J. Natl. Cancer Inst. (1993) 85(13):1038-1049.
  • SUTHERLAND BA, RAHMAN RM, APPLETON I: Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. Nutr. Biochem. (2006) 17(5):291-306.
  • AKTAS O, PROZOROVSKI T, SMORODCHENKO A et al.: Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. (2004) 173(9):5794-5800.
  • LEVITES Y, WEINREB O, MAOR G, YOUDIM MBH, MANDEL S: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. (2001) 78:1073-1082.
  • REZAI-ZADEH K, SHYTLE D, SUN N et al.: Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. (2005) 25(38):8807-8814.
  • CHECKOWAY H, POWERS K, SMITH-WELLER T et al.: Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol. (2002) 155(8):732-738.
  • LI SC, SCHOENBERG BS, WANG CC et al.: A prevalence survey of Parkinson's disease and other movement disorders in the People's Republic of China. Arch. Neurol. (1985) 42(7):655-657.
  • ZHANG ZX, ROMAN GC: Worldwide occurrence of Parkinson's disease: an updated review. Neuroepidemiology (1993) 12(4):195-208.
  • KURIYAMA S, HOZAWA A, OHMORI K et al.: Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am. J. Clin. Nutr. (2006) 83(2):355-361.
  • RITCHIE K, LOVESTONE S: The dementias. Lancet (2002) 360(9347):1759-1766.
  • RINGMAN JM, FRAUTSCHY SA, COLE GM, MASTERMAN DL, CUMMINGS JL: A potential role of the curry spice curcumin in Alzheimer's disease. Curr. Alzheimer Res. (2005) 2(2):131-136.
  • SCHROETER H, BOYD C, SPENCER JP et al.: MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol. Aging (2002) 23(5):861-880.
  • REZNICHENKO L, AMIT T, YOUDIM MB, MANDEL S: Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J. Neurochem. (2005) 93(5):1157-1167.
  • LEVITES Y, AMIT T, YOUDIM MBH, MANDEL S: Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin-3-gallate neuroprotective action. J. Biol. Chem. (2002) 277(34):30574-30580.
  • WEINREB O, MANDEL S, YOUDIM MBH: cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J. (2003) 17(8):935-937.
  • KALFON L, YOUDIM MB, MANDEL SA: Green tea polyphenol (-)-epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: implications for neuroprotection. J. Neurochem. (2007) 100(4):992-1002.
  • HIGDON JV, FREI B: Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. (2003) 43(1):89-143.
  • WISEMAN SA, BALENTINE DA, FREI B: Antioxidants in tea. Crit. Rev. Food Sci. Nutr. (1997) 37(8):705-718.
  • TOWNSEND PA, SCARABELLI TM, PASINI E et al.: Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J. (2004) 18(13):1621-1623.
  • ZHOU YD, KIM YP, LI XC et al.: Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J. Nat. Prod. (2004) 67(12):2063-2069.
  • THOMAS R, KIM MH: Epigallocatechin gallate inhibits HIF-1α degradation in prostate cancer cells. Biochem. Biophys. Res. Commun. (2005) 334(2):543-548.
  • PAN T, FEI J, ZHOU X, JANKOVIC J, LE W: Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci. (2003) 72(9):1073-1083.
  • LU H, MENG X, YANG CS: Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab. Dispos. (2003) 31(5):572-579.
  • LEVITES Y, AMIT T, MANDEL S, YOUDIM MBH: Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J. (2003) 17(8):952-954.
  • REZNICHENKO L, AMIT T, ZHENG H et al.: Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease. J. Neurochem. (2006) 97(2):527-536.
  • KHAN N, AFAQ F, SALEEM M, AHMAD N, MUKHTAR H: Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. (2006) 66(5):2500-2505.
  • FRIEDLICH AL, TANZI RE, ROGERS JT: The 5′-untranslated region of Parkinson's disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol. Psychiatry (2007) 12(3):222-223.
  • ROGERS JT, RANDALL JD, CAHILL CM et al.: An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. (2002) 277(47):45518-45528.
  • ZECCA L, YOUDIM MB, RIEDERER P, CONNOR JR, CRICHTON RR: Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. (2004) 5(11):863-873.
  • MANDEL S, MAOR G, YOUDIM MB: Iron and α-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J. Mol. Neurosci. (2004) 24(3):401-416.
  • KRAMER ML, SCHULZ-SCHAEFFER WJ: Presynaptic α-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J. Neurosci. (2007) 27(6):1405-1410.
  • BRAAK H, MULLER CM, RUB U et al.: Pathology associated with sporadic Parkinson's disease – where does it end? J. Neural Transm. Suppl. (2006) (70):89-97.
  • SULLIVAN PF, FAN C, PEROU CM: Evaluating the comparability of gene expression in blood and brain. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2006) 141(3):261-268.
  • BURCZYNSKI ME, DORNER AJ: Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics (2006) 7(2):187-202.
  • GLATT SJ, EVERALL IP, KREMEN WS et al.: Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc. Natl. Acad. Sci. USA (2005) 102(43):15533-15538.
  • SCHERZER CR, EKLUND AC, MORSE LJ et al.: Molecular markers of early Parkinson's disease based on gene expression in blood. Proc. Natl. Acad. Sci. USA (2007) 104(3):955-960.
  • WEINREB W, AMIT T, GRUNBLATT E et al.: Gene and protein expression profiling in Parkinson's disease: effect of neuroprotective drugs. In: Genomics, Proteomics and the Nervous System. Handbook of Neurochemistry and Molecular Neurobiology (Volume 25). Lajtha A (Ed.), Springer, New York (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.