167
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Rational design of CCR2 antagonists: a survey of computational studies

, , &
Pages 543-557 | Published online: 14 May 2010

Bibliography

  • Carter PH. Chemokine receptor antagonism as an approach to anti-inflammatory therapy: ‘just right’or plain wrong? Curr Opin Chem Biol 2002;6(4):510-25
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354(6):610-21
  • Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007;56(1):16-23
  • Tsou CL, Peters W, Si Y, Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007;117(4):902-9
  • Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001;2(2):108-15
  • Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338(7):436-45
  • Viola A, Luster AD. Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 2008;48:171-97
  • Rajagopalan L, Rajarathnam K. Structural basis of chemokine receptor function–a model for binding affinity and ligand selectivity. Biosci Rep 2006;26(5):325-39
  • Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004;22:891-928
  • Gu L, Tseng SC, Rollins BJ. Monocyte chemoattractant protein-1. Chemokines 1999;72:7-29
  • Newton RC, Vaddi K. Biological responses to C-C chemokines. Methods Enzymol 1997;287:174-86
  • Biswas SK, Sodhi A. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. J Interferon Cytokine Res 2002;22(5):527-38
  • Bischoff SC, Krieger M, Brunner T, Dahinden CA. Monocyte chemotactic protein 1 is a potent activator of human basophils. J Exp Med 1992;175(5):1271-5
  • Chacón MR, Fernández-Real JM, Richart C, Monocyte chemoattractant protein-1 in obesity and type 2 diabetes. Insulin sensitivity study. Obesity 2007;15(3):664-72
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117(1):175-84
  • Abbadie C, Lindia JA, Cumiskey AM, Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Sci Signal 2003;100(13):7947-52
  • Ogata H, Takeya M, Yoshimura T, The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J Pathol 1997;182(1):106-14
  • Double-Blind, randomized, placebo-controlled trial of MLN1202 on C-reactive protein levels in patients with risk factors for cardiovascular disease. Available from: http://clinicaltrialsgov/ct2/show/NCT00715169?term=Mln1202&rank=1. [Last accessed 11 January 2010]
  • MLN1202 in treating patients with bone metastases. Available from: http://clinicaltrialsgov/ct2/show/NCT01015560. [Last accessed 11 January 2010]
  • Proof of confidence study of CCR2 antagonist (BMS-741672) in insulin resistance. Available from: http://clinicaltrialsgov/ct2/show/NCT00699790?term= BMS-741672&rank=2. [Last accessed 11 January 2010]
  • Randomized, double-blind, placebo-controlled, phase 2 study in subjects with osteoarthritic pain of the knee. Available from: http://clinicaltrialsgov/ct2/show/NCT00689273?term= PF-04136309&rank=1. [Last accessed 11 January 2010]
  • Van Lommen G, Doyon J, Coesemans E, 2-Mercaptoimidazoles, a new class of potent CCR2 antagonists. Bioorg Med Chem Lett 2005;15(3):497-500
  • Butora G, Morriello GJ, Kothandaraman S, 4-Amino-2-alkyl-butyramides as small molecule CCR2 antagonists with favorable pharmacokinetic properties. Bioorg Med Chem Lett 2006;16(18):4715-22
  • Butora G, Jiao R, Parsons WH, 3-Amino-1-alkyl-cyclopentane carboxamides as small molecule antagonists of the human and murine CC chemokine receptor 2. Bioorg Med Chem Lett 2007;17(13):3636-41
  • Pinkerton AB, Huang D, Cube RV, Diaryl substituted pyrazoles as potent CCR2 receptor antagonists. Bioorg Med Chem Lett 2007;17(3):807-13
  • Yang L, Zhou C, Guo L, Discovery of 3, 5-bis (trifluoromethyl) benzyl L-arylglycinamide based potent CCR2 antagonists. Bioorg Med Chem Lett 2006;16(14):3735-9
  • Lagu B, Gerchak C, Pan M, Potent and selective CC-chemokine receptor-2 (CCR2) antagonists as a potential treatment for asthma. Bioorg Med Chem Lett 2007;17(15):4382-6
  • Pasternak A, Goble SD, Vicario PP, Potent heteroarylpiperidine and carboxyphenylpiperidine 1-alkyl-cyclopentane carboxamide CCR2 antagonists. Bioorg Med Chem Lett 2008;18(3):994-8
  • Moree WJ, Kataoka K, Ramirez-Weinhouse MM, Small molecule antagonists of the CCR2b receptor. Part 2: discovery process and initial structure–activity relationships of diamine derivatives. Bioorg Med Chem Lett 2004;14(21):5413-6
  • Zou D, Zhai HX, Eckman J, Novel, acidic CCR2 receptor antagonists: from hit to lead. Lett Drug Des Discov 2007;4(3):185-91
  • Dasse OA, Evans JL, Zhai HX, Novel, acidic CCR2 receptor antagonists: lead optimization. Lett Drug Des Discovery 2007;4(4):263-71
  • Carter PH, Brown GD, Friedrich SR, Capped diaminopropionamide–glycine dipeptides are inhibitors of CC chemokine receptor 2 (CCR2). Bioorg Med Chem Lett 2007;17(19):5455-61
  • Moree WJ, Kataoka K, Ramirez-Weinhouse MM, Potent antagonists of the CCR2b receptor. Part 3: SAR of the (R)-3-aminopyrrolidine series. Bioorg Med Chem Lett 2008;18(6):1869-73
  • Cherney RJ, Mo R, Meyer DT, Discovery of disubstituted cyclohexanes as a new class of CC chemokine receptor 2 antagonists. J Med Chem 2008;51(4):721-4
  • Cherney RJ, Nelson DJ, Lo YC, Synthesis and evaluation of cis-3, 4-disubstituted piperidines as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 2008;18(18):5063-5
  • Xia M, Hou C, DeMong D, Substituted dipiperidine alcohols as potent CCR2 antagonists. Bioorg Med Chem Lett 2008;18(12):3562-4
  • Xia M, Hou C, DeMong D, Synthesis and structure–activity relationship of 7-azaindole piperidine derivatives as CCR2 antagonists. Bioorg Med Chem Lett 2008;18(24):6468-70
  • Kothandaraman S, Donnely KL, Butora G, Design, synthesis, and structure–activity relationship of novel CCR2 antagonists. Bioorg Med Chem Lett 2009;19(6):1830-4
  • Cherney RJ, Brogan JB, Mo R, Discovery of trisubstituted cyclohexanes as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 2009;19(3):597-601
  • Cherney RJ, Mo R, Meyer DT, Novel sulfone-containing di-and trisubstituted cyclohexanes as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 2009;19:3418-22
  • Böhm HJ. Current computational tools for de novo ligand design. Curr Opin Biotechnol 1996;7(4):433-6
  • Wlodawer A. Rational approach to aids drug design through structural biology. Annu Rev Med 2002;53(1):595-614
  • DesJarlais RL, Seibel GL, Kuntz ID, Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. PNAS 1990;87:6644-8
  • Oloff S, Mailman RB, Tropsha A. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 2005;48(23):7322-32
  • Zhang S, Wei L, Bastow K, Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des 2007;21(1):97-112
  • Nair PC, Srikanth K, Sobhia ME. QSAR studies on CCR2 antagonists with chiral sensitive hologram descriptors. Bioorg Med Chem Lett 2008;18(4):1323-30
  • Zhou C, Guo L, Parsons WH, alpha-Aminothiazole-gamma-aminobutanoic amides as potent, small molecule CCR2 receptor antagonists. Bioorg Med Chem Lett 2007;17(2):309-14
  • Srikanth K, Nair PC, Sobhia ME. Probing the structural and topological requirements for CCR2 antagonism: holographic QSAR for indolopiperidine derivatives. Bioorg Med Chem Lett 2008;18:1450-6
  • Forbes IT, Cooper DG, Dodds EK, CCR2B receptor antagonists: conversion of a weak HTS hit to a potent lead compound. Bioorg Med Chem Lett 2000;10(16):1803-6
  • Witherington J, Bordas V, Cooper DG, Conformationally restricted indolopiperidine derivatives as potent CCR2B receptor antagonists. Bioorg Med Chem Lett 2001;11(16):2177-80
  • Grigorieff N, Ceska TA, Downing KH, Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 1996;259(3):393-421
  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 1997;277(5332):1676-81
  • Mirzadegan T, Diehl F, Ebi B, Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists. J Biol Chem 2000;275(33):25562-71
  • Shi XF, Liu S, Xiangyu J, Structural analysis of human CCR2b and primate CCR2b by molecular modeling and molecular dynamics simulation. J Mol Model 2002;8(7):217-22
  • Marshall TG, Lee RE, Marshall FE. Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b. Theor Biol Med Model 2006;3(1):1-33
  • Unger VM, Hargrave PA, Baldwin JM, Schertler GFX. Arrangement of rhodopsin transmembrane a-helices. Nature 1997;389(6647):203-5
  • Berkhout TA, Blaney FE, Bridges AM, CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. J Med Chem 2003;46(19):4070-86
  • Palczewski K, Kumasaka T, Hori T, Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000;289(5480):739-45
  • Jaakola VP, Griffith MT, Hanson MA, The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008;322(5905):1211-17
  • Warne T, Serrano-Vega MJ, Baker JG, Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008;454:486-91
  • Cherezov V, Rosenbaum DM, Hanson MA, High-resolution crystal structure of an engineered human 2-adrenergic G protein coupled receptor. Science 2007;318(5854):1258-65
  • Carter PH, Tebben AJ. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol 2009;461:249-79
  • Kimura SR, Tebben AJ, Langley DR. Expanding GPCR homology model binding sites via a balloon potential: a molecular dynamics refinement approach. Proteins 2008;71(4):1919-29
  • Costanzi S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the 2-adrenergic receptor. J Med Chem 2008;51(10):2907-14
  • Q-SiteFinder, ligand binding site prediction. Available from: http://www.modelling.leeds.ac.uk/qsitefinder/. [Last accessed 11 January 2010]
  • ClustalW2. Available from: http:// www.ebi.ac.uk/Tools/clustalw2/ index.html. [Last accessed 2 January 2010]
  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery 2004;3(11):935-49
  • Hall SE, Mao A, Nicolaidou V, Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol Pharmacol 2009;75(6):1325-36
  • Nair PC, Sobhia ME. Fingerprint directed scaffold hopping for identification of CCR2 antagonists. J Chem Inf Model 2008;48(9):1891-902
  • Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins 1999;37(2):228-41
  • Friesner RA, Banks JL, Murphy RB, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47(7):1739-49
  • Sherman W, Day T, Jacobson MP, Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49(2):534-53
  • Fleishman SJ, Harrington S, Friesner RA, An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data. Biophys J 2004;87(5):3448-59
  • Kokubo H, Okamoto Y. Prediction of transmembrane helix configurations by replica-exchange simulations. Chem Phys Lett 2004;383(3-4):397-402
  • Shacham S, Marantz Y, Bar-Haim S, PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 2004;57(1):51-86
  • Trabanino RJ, Hall SE, Vaidehi N, First principles predictions of the structure and function of G-protein-coupled receptors: validation for bovine rhodopsin. Biophys J 2004;86(4):1904-21
  • Davies JW, Glick M, Jenkins JL. Streamlining lead discovery by aligning in silico and high-throughput screening. Curr Opin Chem Biol 2006;10(4):343-51
  • Kubinyi H. Structure-based design of enzyme inhibitors and receptor ligands. Curr Opin Drug Discov Devel 1998;1:4-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.