240
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Opioid receptor targeting ligands for pain management: a review and update

, MD FCCP (Professor of Medicine)
Pages 1007-1022 | Published online: 15 Aug 2010

Bibliography

  • Colvin LA, Lambert DG. Pain medicine: advances in basic sciences and clinical practice. Br J Anaesth 2008;101(1):1-4
  • Addington-Hall J, McCarthy M. Dying from cancer: results of a national population-based investigation. Palliat Med 1995;9(4):295-305
  • Atcheson R, Lambert DG. Update on opioid receptors. Br J Anaesth 1994;73(2):132-4
  • Dietis N, Guerrini R, Calo G, Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth 2009;103(1):38-49
  • Kuehn BM. Efforts aim to curb opioid deaths, injuries. JAMA 2009;301(12):1213-15
  • Kieffer BL. Opioids: first lessons from knockout mice. Trends Pharmacol Sci 1999;20(1):19-26
  • Peng X, Neumeyer JL. Kappa receptor bivalent ligands. Curr Top Med Chem 2007;7(4):363-73
  • Porreca F, Takemori AE, Sultana M, Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 1992;263(1):147-52
  • He L, Lee NM. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J Pharmacol Exp Ther 1998;285(3):1181-6
  • Horan P, Tallarida RJ, Haaseth RC, Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra and sub-additivity. Life Sci 1992;50(20):1535-41
  • Cahill CM, Morinville A, Lee MC, Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 2001;21(19):7598-607
  • Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 1991;258(1):299-303
  • Hepburn MJ, Little PJ, Gingras J, Kuhn CM. Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats. J Pharmacol Exp Ther 1997;281(3):1350-6
  • Roy S, Guo X, Kelschenbach J, In vivo activation of a mutant mu-opioid receptor by naltrexone produces a potent analgesic effect but no tolerance: role of mu-receptor activation and delta-receptor blockade in morphine tolerance. J Neurosci 2005;25(12):3229-33
  • Foxx-Orenstein AE, Jin JG, Grider JR. 5-HT4 receptor agonists and delta-opioid receptor antagonists act synergistically to stimulate colonic propulsion. Am J Physiol 1998;275(5 Pt 1):G979-83
  • Freye E, Latasch L, Portoghese PS. The delta receptor is involved in sufentanil-induced respiratory depression—opioid subreceptors mediate different effects. Eur J Anaesthesiol 1992;9(6):457-62
  • O'Neill SJ, Collins MA, Pettit HO, Antagonistic modulation between the delta opioid agonist BW373U86 and the mu opioid agonist fentanyl in mice. J Pharmacol Exp Ther 1997;282(1):271-7
  • Lee PH, McNutt RW, Chang KJ. A nonpeptidic delta opioid receptor agonist, BW373U86, attenuates the development and expression of morphine abstinence precipitated by naloxone in rat. J Pharmacol Exp Ther 1993;267(2):883-7
  • Su YF, McNutt RW, Chang KJ. Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antinociception. J Pharmacol Exp Ther 1998;287(3):815-23
  • Freye E, Anderson-Hillemacher A, Ritzdorf I, Levy JV. Opioid rotation from high-dose morphine to transdermal buprenorphine (Transtec) in chronic pain patients. Pain Pract 2007;7(2):123-9
  • Wirz S, Wartenberg HC, Elsen C, Managing cancer pain and symptoms of outpatients by rotation to sustained-release hydromorphone: a prospective clinical trial. Clin J Pain 2006;22(9):770-5
  • Virk MS, Williams JT. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol 2008;73(4):1301-8
  • Nielsen CK, Ross BF, Lotfipour S, Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain 2007;132(3):289-300
  • Staahl C, Dimcevski G, Andersen SD, Differential effect of opioids in patients with chronic pancreatitis: an experimental pain study. Scand J Gastroenterol 2007;42(3):383-90
  • Blumenthal S, Min K, Marquardt M, Borgeat A. Postoperative intravenous morphine consumption, pain scores, and side effects with perioperative oral controlled-release oxycodone after lumbar discectomy. Aneth Analg 2007;105(1):233-7
  • Narita M, Nakamura A, Ozaki M, Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity to morphine. Neurophyschopharmacology 2008;33(5):1097-112
  • Pasternak GW. Molecular biology of opioid analgesia. J Pain Symptom Manage 2005;29(5 Suppl):S2-9
  • Filizola M, Weinstein H. Structural models for dimerization of G-protein coupled receptors: the opioid receptor homodimers. Biopolymers 2002;66(5):315-25
  • Gupta A, Decaillot FM, Devi LA. Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS J 2006;8(1):E153-9
  • Pan YX. Diversity and complexity of the mu opioid receptor gene: alternative pre-mRNA splicing and promoters. DNA Cell Biol 2005;24(11):736-50
  • Lopez A, Salome L. Membrane functional organization and dynamic of mu-opioid receptors. Cell Mol Life Sci 2009;66(13):2093-108
  • Gouldson PR, Snell CR, Bywater RP, Domain swapping in G-protein coupled receptor dimers. Protein Eng 1998;11(12):1181-93
  • Gomes I, Filipovska J, Jordan BA, Devi LA. Oligomerization of opioid receptors. Methods 2002;27(4):358-65
  • Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999;399(6737):697-700
  • Jordan BA, Trapaidze N, Gomes I, Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 2001;98(1):343-8
  • Portoghese PS, Lunzer MM. Identity of the putative delta1-opioid receptor as a delta-kappa heteromer in the mouse spinal cord. Eur J Pharmacol 2003;467(1-3):233-4
  • Hasbi A, Nguyen T, Fan T, Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 2007;46(45):12997-3009
  • Milligan G, Canals M, Pediani JD, The role of GPCR dimerisation/oligomerisation in receptor signalling. Ernst Schering Found Symp Proc 2006;2:145-61
  • Portoghese PS. From models to molecules: opioid receptor dimmers, bivalent ligands, and selective opioid receptor probes. J Med Chem 2001;44(14):2259-69
  • Ymazaki T, Ro S, Goodman M, A topochemical approach to explain morphiceptin bioactivity. J Med Chem 1993;36(6):708-19
  • Janecka A, Fichna J, Mirowski M, Janecki T. Structure-activity relationship, conformation and pharmacology studies of morphiceptin analogues—selective mu-opioid receptor ligands. Mini Rev Med Chem 2002;2(6):565-72
  • Hruby VJ, Gehrig CA. Recent developments in the design of receptor specific opioid peptides. Med Res Rev 1989;9(3):343-401
  • Hruby VJ, Agnes RS. Conformation-activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers 1999;51(6):391-410
  • Shane R, Wilk S, Bodnar RJ. Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Res 1999;815(2):278-86
  • Fichna J, de-Rego JC, Chung NN, Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), d-2-Nal(4)] endomorphin-1 (Antanal-1) and [Dmt(1), d-2-Nal(4)]endomorphin-2 (Antanal-2). J Med Chem 2007;50(3):512-20
  • Chaturvedi K, Christoffers KH, Singh K, Howells RD. Structure and regulation of opioid receptors. Biopolymers 2000;55(4):334-46
  • Bodnar RJ, Klein GE. Endogenous opiates and behavior: 2004. Peptides 2005;26(12):2629-711
  • Brownson EA, Abbruscato TJ, Gillespie TJ, Effect of peptidases at the blood brain barrier on the permeability of enkephalin. J Pharmacol Exp Ther 1994;270(2):675-80
  • Przewlocki R, Przewlocka B. Opioids in chronic pain. Eur J Pharmacol 2001;429(1-3):79-91
  • Teschemacher H, Koch G, Branti V. Milk protein-derived opioid receptor ligands. Biopolymers 1997;43(2):99-117
  • Przewlocki R, Labuz D, Mika J, Pain inhibition by endomorphins. Ann NY Acad Sci 1999;897:154-64
  • Zadina JE, Martin-Schild S, Gerall AA, Endomorphins: novel endogenous mu-opiate receptor agonists in regions of high mu-opiate receptor density. Ann NY Acad Sci 1999;897:136-44
  • Mor A, Amiche M, Nicolas P. Enter a new post-translational modification: d-amino acids in gene-encoded peptides. Trends Biochem Sci 1992;17(12):481-5
  • Montecucchi PC, de Castiglione R, Piani S, Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 1981;17(3):275-83
  • Yamada R, Kera Y. d-amino acid hydrolyzing enzymes. EXS 1998;85:145-55
  • Okada Y, Fukumizu A, Takahash M, Synthesis of stereoisomeric analogues of endomorphin-2, H-Tyr-Pro-Phe-Phe-NH(2), and examination of their opioid receptor binding activities and solution conformation. Biochem Biophys Res Commun 2000;276(1):7-11
  • Paterlini MG, Avitabile F, Ostrowski BG, Stereochemical requirements for receptor recognition of the mu-opioid peptide endomorphin-1. Biophys J 2000;78(2):590-9
  • Schiller PW, Nguyen TM, Chung NN, Lemieux C. Dermophin analogues carrying an increased positive net charge in their “message” domain display extremely high mu opioid receptor selectivity. J Med Chem 1989;32(3):698-703
  • Sato T, Sakurada S, Sakurada T, Opioid activities of d-Ar2-substituted tetrapeptides. J Pharmacol Exp Ther 1987;242(2):654-9
  • Neilan CL, Nguyen TM, Schiller PW, Pasternak GW. Pharmacological characterization of the dermorphin analog [Dmt(1)]DALDA, a highly potent and selective mu-opioid peptide. Eur J Pharmacol 2001;419(1):15-23
  • Riba P, Ben Y, Nguyen TM, [Dmt(1)]DALDA is a highly selective and potent at mu opioid receptors, but is not cross-tolerant with systemic morphine. Curr Med Chem 2002;9(1):31-9
  • Ambo A, Murase H, Niizuma H, Dermorphin and deltorphin heptapeptide analogues: replacement of Phe residue by Dmp greatly improves opioid receptor affinity and selectivity. Bioorg Med Chem Lett 2002;12(6):879-81
  • Longobardo L, Melck D, Siciliano R, Beta-casomorphins: substitution of phenylalanine with beta-homo phenylalanine increases the mu-type opioid receptor affinity. Bioorg Med Chem Lett 2000;10(11):1185-8
  • Sakurada S, Takeda S, Sato T, Selective antagonism by naloxonazine of antinociception by Tyr-d-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors. Eur J Pharmacol 2000;395(2):107-12
  • Cardillo G, Gentilucci L, Qasem AR, Endomorphin-1 analogues containing beta-proline are mu-opioid receptor agonists and display enhanced enzymatic hydrolysis resistance. J Med Chem 2002;45(12):2571-8
  • Schmidt R, Wilkes BC, Chung NN, Effect of aromatic amino acid substitutions in the 3-position of cyclic beta-casomorphin analogues on mu-opioid agonist/delta-opioid antagonist properties. Int J Pept Protein Res 1996;48(5):411-19
  • Schiller PW, Nguyen TM, Weltrowska G, Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists. Proc Natl Acad Sci USA 1992;89(24):11871-5
  • Schiller PW, Fundytus ME, Merovitz L, The opioid mu agonist/delta antagonist DIPP-NH(2)[Psi] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J Med Chem 1999;42(18):3520-6
  • Janecka A, Perlikowska R, Gach K, Development of opioid peptide analogues for pain relief. Curr Pharm Des 2009. [Epub ahead of print]
  • Witt KA, Gillespie TJ, Huber JD, Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides 2001;22(12):2329-43
  • Zlokovic BV. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier. Pharm Res 1995;12(10):1395-406
  • Polt R, Porreca F, Szabo LZ, Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 1994;91(15):7114-18
  • Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP. Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem 1997;69(3):1236-45
  • Gao B, Hagenbuch B, Kullak-Ublick GA, organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 2000;294(1):73-9
  • Negri L, Lattanzi R, Tabacco F, Glycodermorphins: opioid peptides with potent and prolonged analgesic activity and enhanced blood-brain barrier penetration. Br J Pharmacol 1998;124(7):1516-22
  • Drouillat B, Hillery AM, Dekany G, Novel liposaccharide conjugates for drug and peptide delivery. J Pharm Sci 1998;87(1):25-30
  • Tomatis R, Marastoni M, Balboni G, Synthesis and pharmacological activity of deltorphin and dermorphin-related glycopeptides. J Med Chem 1997;40(18):2948-52
  • Bilsky EJ, Egleton RD, Mitchell SA, Enkephalin glycopeptides analogues produce analgesia with reduced dependence liability. J Med Chem 2000;43(13):2586-90
  • Egleton RD, Mitchell SA, Huber JD, Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res 2000;881(1):37-46
  • Anand BS, Dey S, Mitra AK. Current prodrug strategies via membrane transporters/receptors. Expert Opin Biol Ther 2002;2(6):607-20
  • Bogel D, Schmidt R, Hartung K, Cyclic morphiceptin analogs: cyclization studies and opioid activities in vitro. Int J Pept Protein Res 1996;48(6):495-502
  • Hruby VJ, Balse PM. Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 2000;7(9):945-70
  • Tomboly C, Pepter A, Toth G. In vitro quantitative study of the degradation of endomorphins. Peptides 2002;23(9):1573-80
  • Gudmundsson OS, Pauletti GM, Wang W, Coumarinic acid-based cyclic prodrugs of opioid peptides that exhibit metabolic stability to peptidases and excellent cellular permeability. Pharm Res 1999;16(1):7-15
  • Bak A, Gudmundsson OS, Friis GJ, Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers. Pharm Res 1999;16(1):24-9
  • Uchiyama T, Kotani A, Tatsumi H, Development of novel lipophilic derivatives of DADLE (leucine enkephalin analogue): intestinal permeability characteristics of DADLE derivatives in rats. Pharm Res 2000;17(12):1461-7
  • Weber SJ, Greene DL, Sharma SD, Distribution and analgesia of [3H][d-Pen2, d-Pen5] enkephalin and two halogenated analogs after intravenous administration. J Pharmacol Exp Ther 1991;259(3):1109-17
  • Yu J, Butelman ER, Woods JH, Dynorphin A (1-8) analog, E-2078, crosses the blood-brain barrier in rhesus monkeys. J Pharmacol Exp Ther 1997;282(2):633-8
  • Vanderah T. Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 2010;26(1):S10-15
  • Obara I, Rodriguez Parkitna J, Korostynski M, Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. Pain 2008;141:283-91
  • Kumar V, Marella M, Cortes-Burgos L, Arylacetamide as peripherally restricted kappa opioid receptor agonists. Bio Med Chem Lett 2000;10:2567-70
  • Tao YM, Li QL, Zhang CF, LPK-26, a novel κ-opioid receptor agonist with potent antinociceptive effects and low dependence potential. Eur J Pharm 2008;584:306-11
  • DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Design 2004;10:743-57
  • Barber A, Bartoszyk GD, Bender HM, A pharmacological profile of the novel, peripherally-selective κ-opioid receptor agonist, EMD 61753. Br J Pharmcol 1994;113:1317-27
  • Eisenach J, Carpenter R, Curry R. Analgesia from a peripherally active κ-opioid receptor agonist in patients with chronic pancreatitis. Pain 2003;101:89-95
  • Vanderah TW, Schteingart CD, Trojnar J, FE200041 (d-Phe-d-Phe-d-Nle-d-Arg-NH2): a peripheral efficacious κ opioid agonist with unprecedented selectivity. J Pharm Exp Ther 2004;310(1):326-33
  • Vanderah TW, Largent-Milnes T, Lai J, Novel d-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral κ-opioid receptors. Eur J Pharm 2008;583:62-72
  • Arendt-Nielsen L, Olesen AE, Staahl C, Analgesic efficacy of peripheral κ-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model. Anesthesiology 2009;111:616-24
  • Liu Z, Zhang J, Zhang A. Design of multivalent ligand targeting G-protein-coupled receptors. Curr Pharm Design 2009;15:682-718
  • Morphy R, Rankovic Z. Designing multiple ligands – medicinal chemistry strategies and challenges. Curr Pharm Design 2009;15:587-600
  • Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 1997;272(43):26959-64
  • George SR, Fan T, Xie Z, Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 2000;275(34):26128-35
  • Breit A, Gagnidze K, Devi LA, Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits delta OR signalling. Mol Pharmacol 2006;70(2):686-96
  • Jordan BA, Svejic S, Devi LA. Opioids and their complicated receptor complexes. Neurophsychopharmacology 2000;23(4 Suppl):S5-18
  • Waldhoer M, Fong J, Jones RM, A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimmers. Proc Natl Acad Sci USA 2005;102(25):9050-5
  • Abdelhamid EE, Sultana M, Protoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 1991;258(1):299-303
  • Fundytus ME, Schiller PW, Shapiro M, Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi]. Eur J Pharmacol 1995;286(1):105-8
  • Hepburn MJ, Little PH, Gingras J, Kuhn CM. Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats. J Pharmacol Exp Ther 1997;281(3):1350-6
  • Schmidt R, Vogel D, Mrestani-Klaus C, Cyclic beta-casomorphin analogues with mixed mu agonist/delta antagonist properties: synthesis, pharmacological characterization, and conformational aspects. J Med Chem 1994;37(8):1136-44
  • Schiller PW. Bi- or multifunctional opioid peptide drugs. Life Sci 2010;86:598-603
  • Li T, Shiotani K, Miyazaki A, Bifunctional [2′, 6′-dimethyl-L-tyrosine1] endomorphin-2 analogues substituted at position 3 with alkylated phenylalanine derivatives yield potent mixed mu-agonist/delta-antagonist and dual mu-agonist/delta-agonist opioid ligands. J Med Chem 2007;50(12):2753-66
  • Wells JL, Bartlett JL, Ananthan S, Bilsky EJ. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid μ-agonist/ δ-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. J Pharmacol Exp Ther 2001;297:597-605
  • Purington LC, Pogozheva ID, Traynor JR, Mosberg HI. Pentapeptides displaying mu opioid receptor agonist and delta opioid receptor partial agonist/antagonist properties. J Med Chem 2009;52(23):7724-31
  • Daniels DJ, Lenard NR, Etienne CL, Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc Natl Acad Sci USA 2005;102(52):19208-13
  • Lenard NR, Daniels DJ, Portoghese PS, Roerig SC. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur J Pharmacol 2007;566(1-3):75-82
  • Ballet S, Pietsch M, Abell AD. Multiple ligands in opioid research. Protein Pept Lett 2008;15(7):668-82
  • Schiller PW, Weltrowska G, Berezowska I, The TIPP opioid peptide family: development of delta antagonists, delta agonists, and mixed mu agonist/delta antagonists. Biopolymers 1999;51(6):411-25
  • Janecka A, Perlikowska R, Gach K, Development of opioid peptide analogs for pain relief. Curr Pharm Des 2010;16:1126-35
  • Mathews JL, Peng X, Xiong W, Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties. J Pharmacol Exp Ther 2005;315(2):821-7
  • Neumeyer JL, Zhang A, Xiong W, Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors. J Med Chem 2003;46(24):5162-70
  • Neumeyer JL, Peng X, Knapp Bi, New opioid designed multiple ligands from Dmt-Tic and morphinan pharmacophores. J Med Chem 2006;49(18):5640-3
  • Portoghese PS, Larson DL, Yim CB, Stereostructure-activity relationship of opioid agonist and antagonist bivalent ligands. Evidence for bridging between vicinal opioid receptors. J Med Chem 1985;28:1140-41
  • Silbert BS, Lipkowski AW, Cepeda MS, Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration. Agents Actions 1991;33(3-4):382-7
  • Horan PJ, Mattia A, Bilsky EJ, Antinociceptive profile of biphalin, a dimeric enkephalin analog. J Pharmacol Exp Ther 1993;265(3):1446-54
  • Costa T, Wuster M, Herz A, Receptor binding and biological activity of bivalent enkephalins. Biochem Pharmacol 1985;34(1):25-30
  • Petrov RR, Vardanyan RS, Lee YS, Synthesis and evaluation of 3-aminopropionyl substituted fentanyl analogues for opioid activity. Bioorg Med Chem Lett 2006;16:4946-50
  • Chiou LC, Liao YY, Fan PC, Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr Drug Targets 2007;8(1):117-35
  • Ueda H, Inoue M, Takeshima H, Iwasawa Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 2000;20(20):7640-7
  • Beedle AM, McRory JE, Poirot O, Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004;7(2):118-25
  • Evans RM, You H, Hameed S, Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J Biol Chem 2010;285(2):1032-40
  • Tombler E, Cabanilla NJ, Carman P, G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem 2006;281(3):1827-39
  • Marker CL, Lujan R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 2005;25(14):3551-9
  • Dang VC, Napier IA, Christie MJ. Two distinct mechanisms mediate acute mu-opioid receptor desensitization in native neurons. J Neurosci 2009;29(10):3322-7
  • Toll L, Khroyan TV, Polgar WE, Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/ mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther 2009;331(3):954-64
  • Lambert DG. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev 2008;7:694-710
  • Yamamoto T, Nair P, Davis P, Design, synthesis, and biological evaluation of novel bifunctional C-terminal-modified peptides for delta/mu opioid receptor agonists and neurokinin-1 receptor antagonists. J Med Chem 2007;50(12):2779-86
  • Yamamoto T, Nair P, Vagner J, A structure-activity relationship study and combinatorial synthetic approach of C-terminal modified bifunctional peptides that are delta/mu opioid receptor agonists and neurokinin 1 receptor antagonists. J Med Chem 2008;51(5):1369-76
  • Hruby VJ, Agnes RS, Davis P, Design of novel peptide ligands which have opioid agonist activity and CCK antagonist activity for the treatment of pain. Life Sci 2003;73(6):699-704
  • Shao L, Wang F, Hewitt MC, Barberich TJ. Mu-Opioid/5-HT4 dual pharmacologically active agents-efforts towards an effective opioid analgesic with less GI and respiratory side effects (Part I). Bioorg Med Chem Lett 2009;19(19):5679-83
  • Regunathan S. Agmatine: biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J 2006;8(3):E479-84
  • Wu N, Su R, Li J. Agmatine and imidazoline receptors: their role in opioid analgesia, tolerance and dependence. Cell Mol Neurobiol 2008;28:629-41
  • Montero A, Goya P, Jagerovic N, Guanidinium and aminoimidazolinium derivatives of N-(4-Piperidyl) propanamides as potential ligands for μ-opioid and I2-imidazoline receptors: synthesis and pharmacological screening. Bioorg Med Chem 2002;10:1009-18
  • Dardonville C, Fernandez-Fernandez C, Gibbons SL, Synthesis and pharmacological studies of new hybrid derivatives of fentanyl active at the μ-opioid receptor and I2-imidazoline binding sites. Bioorg Med Chem 2006;14:6570-80
  • Dardonville C, Jagerovic N, Callado LF, Meana JJ. Fentanyl derivatives bearing aliphatic alkaneguanidinium moieties: a new series of hybrid molecules with significant binding affinity for μ-opioid receptors and I2-imidazoline binding sites. Bioorg Med Chem Lett 2004;14:491-93
  • Boules M, Shaw A, Liang Y, NT69L, a novel analgesic, shows synergy with morphine. Brain Res 2009;1294:22-8
  • Freye E, Azevedo L, Hartung E. Reversal of fentanyl related respiratory depression with nalbuphine. Effects on the CO2-response curve in man. Acta Anaesthesiol Belg 1985;36(4):365-74
  • Liu KS, Hu OY, Ho ST, Antinociceptive effect of a novel long-acting nalbuphine preparation. Br J Anaesth 2004;92(5):712-15
  • Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs 1991;41(3):326-44
  • Yeh YC, Lin TF, Lin FS, Combination of opioid agonist and agonist-antagonist: patient-controlled analgesia requirement and adverse events among different-ratio morphine and nalbuphine admixtures for postoperative pain. Br J Anaesth 2008;101(4):542-8
  • Tzschentke TM, Christoph T, Kogel B, (-)-(1R, 2R)-3-(3-dimethylamino-1-ethyl-2-methylpropyl)-phenol hydrochloride (tapentadol HCI): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 2007;323(1):265-76
  • Carter GT, Sullivan MD. Antidepressants in pain management. Curr Opin Investig Drugs 2002;3(3):454-8
  • Terlinden R, Ossig J, Fliegert F, Absorption, metabolism, and excretion of 14C-labeled tapentadol HC1 in healthy male subjects. Eur J Drug Metab Pharmacokinet 2007;32(3):163-9
  • Hartrick CT. Tapentadol immediate release for the relief of moderate-to-severe acute pain. Expert Opin Pharmacother 2009;10(13):2687-96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.