488
Views
83
CrossRef citations to date
0
Altmetric
Reviews

Accounting for water molecules in drug design

&
Pages 65-74 | Published online: 23 Nov 2010

Bibliography

  • Mancera RL. Molecular modeling of hydration in drug design. Curr Opin Drug Discov Devel 2007;10(3):275-80
  • de Beer SBA, Vermeulen NPE, Oostenbrink C. The role of water molecules in computational drug design. Curr Top Med Chem 2010;10:55-66
  • Gilson MK, Given JA, Bush BL, The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 1997;72(3):1047-69
  • Michel J, Tirado-Rives J, Jorgensen WL. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 2009;131(42):15403-11
  • Lu Y, Wang R, Yang C-Y, Analysis of ligand-bound water molecules in high-resolution crystal structures of protein–ligand complexes. J Chem Inf Model 2007;47(2):668-75
  • Ladbury JE. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 1996;3(12):973-80
  • Bashford D, Case DA. Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 2000;51:129-52
  • Ghosh A, Rapp CS, Friesner RA. Generalized born model based on a surface integral formulation. J Phys Chem B 1998;102(52):10983-90
  • Tsui V, Case DA. Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 2000;56(4):275-91
  • Edinger SR, Cortis C, Shenkin PS, Solvation free energies of peptides: comparison of approximate continuum solvation models with accurate solution of the Poisson−Boltzmann equation. J Phys Chem B 1997;101(7):1190-7
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 2001;105(43):9954-60
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 2000;112(20):8910-22
  • Horn HW, Swope WC, Pitera JW, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 2004;120(20):9665-78
  • Amira S, Spangberg D, Hermansson K. Derivation and evaluation of a flexible SPC model for liquid water. Chem Phys 2004;303(3):327-34
  • Lobaugh J, Voth GA. A quantum model for water: equilibrium and dynamical properties. J Chem Phys 1997;106(6):2400-10
  • Borgis D, Staib A. A semiempirical quantum polarization model for water. Chem Phys Lett 1995;238:187-92
  • Paesani F, Voth GA. The properties of water: insights from quantum simulations. J Phys Chem B 2009;113(17):5702-19
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liquids 2002;101(1-3):219-60
  • Lam P, Jadhav P, Eyermann C, Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994;263(5145):380-4
  • Grzesiek S, Bax A, Nicholson LK, NMR Evidence for the displacement of a conserved interior water molecule in HIV protease by a non-peptide cyclic urea-based inhibitor. J Am Chem Soc 1994;116(4):1581-2
  • Hodge CN, Aldrich PE, Bacheler LT, Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. Chem Biol 1996;3(4):301-14
  • Liu C, Wrobleski ST, Lin J, 5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38alpha MAP Kinase. J Med Chem 2005;48(20):6261-70
  • Chen JM, Xu SL, Wawrzak Z, Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry 1998;37(51):17735-44
  • Wissner A, Berger DM, Boschelli DH, 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J Med Chem 2000;43(17):3244-56
  • Mikol V, Papageorgiou C, Borer X. The role of water molecules in the structure-based design of (5-Hydroxynorvaline)-2-cyclosporin: synthesis, biological activity, and crystallographic analysis with cyclophilin A. J Med Chem 1995;38(17):3361-7
  • Dunitz JD. The entropic cost of bound water in crystals and biomolecules. Science 1994;264(5159):670
  • Raymer ML, Sanschagrin PC, Punch WF, Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm. J Mol Biol 1997;265(4):445-64
  • Jia R, Yang L-J, Yang S-Y. Binding energy contributions of the conserved bridging water molecules in CDK2-inhibitor complexes: a combined QM/MM study. Chem Phys Lett 2008;460(1-3):300-5
  • Yu H, Rick SW. Free energies and entropies of water molecules at the inhibitor–protein interface of DNA gyrase. J Am Chem Soc 2009;131:6608-13
  • Griffiths DJ. Introduction to electrodynamics. Prentice Hall, Inc., Upper Saddle River, NJ; 1999
  • Dill KA, Bromberg S. Molecular driving forces: statistical thermodynamics in chemistry and biology. Garland Science, New York, New York; 2003
  • Nicholls A, Honig B. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J Comput Chem 1991;12(4):435-45
  • Baker NA, Sept D, Joseph S, Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001;98(18):10037-41
  • Madura JD, Briggs JM, Wade RC, Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Compu Phys Commun 1995;91(1-3):57-95
  • Born M. Volumen und Hydratationswarme der Ionen. Zeitschrift fur Physik A Hadrons and Nuclei 1920;1(1):45-8
  • Lazaridis T. Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B 1998;102(18):3531-41
  • Lazaridis T. Inhomogeneous fluid approach to solvation thermodynamics. 2. Applications to simple fluids. J Phys Chem B 1998;102(18):3542-50
  • Simonson T, Carlsson J, Case DA. Proton binding to proteins:?pKa calculations with explicit and implicit solvent models. J Am Chem Soc 2004;126(13):4167-80
  • Shea J-E, Onuchic JN, Brooks CL. Probing the folding free energy landscape of the src-SH3 protein domain. Proc Natl Acad Sci USA 2002;99(25):16064-8
  • Jorgensen WL, Chandrasekhar J, Madura JD, Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79(2):926-35
  • Huang N, Shoichet BK. Exploiting ordered waters in molecular docking. J Med Chem 2009;51(16):4862-5
  • Roberts BC, Mancera RL. Ligand-protein docking with water molecules. J Chem Inf Model 2008;48:397-408
  • Thilagavathi R, Mancera RL. Ligand-protein cross-docking with water molecules. J Chem Inf Model 2010;50:415-21
  • de Graaf C, Pospisil P, Pos W, Binding mode prediction of cytochrome P450 and thymidine kinase protein–ligand complexes by consideration of water and rescoring in automated docking. J Med Chem 2005;48(7):2308-18
  • Nissink JWM, Murray C, Hartshorn M, A new test set for validating predictions of protein–ligand interaction. Proteins Struct Funct Bioinform 2002;49(4):457-71
  • Birch L, Murray CW, Hartshorn MJ, Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase. J Comput-Aided Mol Des 2002;16(12):855-69
  • Hritz J, de Ruiter A, Oostenbrink C. Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. J Med Chem 2008;51(23):7469-77
  • Santos R, Hritz J, Oostenbrink C. Role of water in molecular docking simulations of cytochrome P450 2D6. J Chem Inf Model 2009;50(1):146-54
  • Garcia-Sosa A, Mancera R. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. J Mol Model 2006;12(4):422-31
  • Graves AP, Shivakumar DM, Boyce SE, Rescoring docking hit lists for model cavity sites: predictions and experimental testing. J Mol Biol 2008;377(3):914-34
  • Taylor RD, Jewsbury PJ, Essex JW. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. J Comput Chem 2003;24:1637-56
  • Lee MR, Sun Y. Improving docking accuracy through molecular mechanics generalized born optimization and scoring. J Chem Theory Comput 2007;3(3):1106-19
  • Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 2006;49(16):4805-8
  • Guimaraes CRW, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 2008;48(5):958-70
  • Friesner RA, Banks JL, Murphy RB, Glide:? a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47(7):1739-49
  • Schrodinger L. MacroModel. 9.8 edition. New York, NY; 2010
  • Schrodinger L. Liaison. New York, NY; 2010
  • Cho AE, Guallar V, Berne BJ, Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 2005;26(9):915-31
  • Bottoms CA, White TA, Tanner JJ. Exploring structurally conserved solvent sites in protein families. Proteins Struct Funct Bioinform 2006;64:404-21
  • Zhang XJ, Matthews BW. Conservation of solvent-bindnig sites in 10 crystal forms of T4 lysozyme. Protein Sci 1994;3(7):1031-9
  • Prasad BVLS, Suguna K. Role of water molecules in the structure and function of aspartic proteinases. Acta Crystallogr D 2002;58(2):250-9
  • Bottoms CA, Smith PE, Tanner JJ. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Sci 2002;11(9):2125-37
  • Sreenivasan U, Axelsen PH. Buried water in homologous serine proteases. Biochemistry 1992;31(51):12785-91
  • Loris R, Stas PP, Wyns L. Conserved waters in legume lectin crystal structures. The importance of bound water for the sequence–structure relationship within the legume lectin family. J Biol Chem 1994;269(43):26722-33
  • Ehrlich L, Reczko M, Bohr H, Prediction of protein hydration sites from sequence by modular neural networks. Protein Eng 1998;11(1):11-9
  • Poornima CS, Dean PM. Hydration in drug design. 2. Influence of local site surface shape on water binding. J Comput Aided Mol Des 1995;9:513-20
  • Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985;28(7):849-57
  • Cozzini P, Fornabaio M, Mozzarelli A, Water: how to evaluate its contribution in protein–ligand interactions. Int J Quantum Chem 2006;106(3):647-51
  • Michel J, Tirado-Rives J, Jorgensen WL. Prediction of the water content in protein binding sites. J Phys Chem B 2009;113(40):13337-46
  • Amadasi A, Surface JA, Spyrakis F, Robust classification of “relevant” water molecules in putative protein binding sites. J Med Chem 2008;51(4):1063-7
  • Amadasi A, Spyrakis F, Cozzini P, Mapping the energetics of water–protein and water–ligand interactions with the “natural” HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. J Mol Biol 2006;358(1):289-309
  • Garcia-Sosa AT, Mancera RL, Dean PM. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein–ligand complexes. J Mol Model 2003;9(3):172-82
  • Verdonk ML, Chessari G, Cole JC, Modeling water molecules in protein–ligand docking using GOLD. J Med Chem 2005;48(20):6504-15
  • Osterberg F, Morris GM, Sanner MF, Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins Struct Funct Bioinform 2002;46(1):34-40
  • Schnecke V, Kuhn L. Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov Des 2000;20(1):171-90
  • Rarey M, Kramer B, Lengauer T. The particle concept: placing discrete water molecules during protein–ligand docking predictions. Proteins Struct Funct Bioinform 1999;34(1):17-28
  • Corbeil CR, Englebienne P, Yannopoulos CG, Docking ligands into flexible and solvated macromolecules. 2. Development and application of fitted 1.5 to the virtual screening of potential HCV polymerase inhibitors. J Chem Info Model 2008;48(4):902-9
  • Corbeil CR, Englebienne P, Moitessier N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J Chem Info Model 2007;47(2):435-49
  • Corbeil CR, Moitessier N. Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs. J Chem Info Model 2009;49(4):997-1009
  • Young T, Abel R, Kim B, Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. Proc Natl Acad Sci 2007;104(3):808-13
  • Abel R, Young T, Farid R, Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 2008;130(9):2817-31
  • Beuming T, Farid R, Sherman W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci 2009;18(8):1609-19
  • Guimaraes CRW, Mathiowetz AM. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations. J Chem Info Model 2010;50(4):547-59
  • Chipot C, Pearlman DA. Free energy calculations. The long and winding gilded road. Mol Simul 2002;28:1-12
  • Simonson T, Archontis G, Karplus M. Free energy simulations come of age:? protein−ligand recognition. Acc Chem Res 2002;35(6):430-7
  • Kollman P. Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 1993;93(7):2395-417
  • Pan C, Mezei M, Mujtaba S, Structure-guided optimization of small molecules inhibiting Human Immunodeficiency Virus 1 tat association with the human coactivator p300/CREB binding protein-associated factor. J Med Chem 2007;50(10):2285-8
  • Barillari C, Taylor J, Viner R, Classification of water molecules in protein binding sites. J Am Chem Soc 2007;129(9):2577-87
  • Woods CJ, Essex JW, King MA. Enhanced configurational sampling in binding free-energy calculations. J Phys Chem B 2003;107(49):13711-18
  • Nagasima T, Sugita Y, Mitsutake A, Generalized-ensemble simulations of spin systems and protein systems. Comput Phys Commun 2002;146(1):69-76
  • Sugita Y, Okamoto Y. Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem Phys Lett 2000;329(3-4):261-70
  • Michel J, Verdonk ML, Essex JW. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? J Med Chem 2006;49(25):7427-39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.