169
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Preclinical drug development for childhood cancer

, , , &
Pages 49-64 | Published online: 24 Nov 2010

Bibliography

  • Boklan J. Little patients, losing patience: pediatric cancer drug development. Mol Cancer Ther 2006;5(8):1905-8
  • Balis FM. The challenge of developing new therapies for childhood cancers. Oncologist 1997;2(1):I-II
  • Balis FM, Fox E, Widemann BC, Clinical drug development for childhood cancers. Clin Pharmacol Ther 2009;85(2):127-9
  • Altekruse SF, Krapcho KCM, Neyman N, , editors, SEER Cancer Statistics Review, 1975-2007, National Cancer Institute. Bethesda, MD. Available from: http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site 2010
  • Meshinchi S, Woods WG, Stirewalt DL, Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97(1):89-94
  • Arico M, Schrappe M, Hunger SP, Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010;28(31):4755-61
  • Houghton PJ, Adamson PC, Blaney S, Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res 2002;8(12):3646-57
  • Houghton PJ, Morton CL, Tucker C, The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007;49(7):928-40
  • Houghton P. Pediatric Preclinical Testing Program (PPTP). Available from: http://pptp.nchresearch.org/index.html [Last accessed 8 July 2010]
  • Neale G, Su X, Morton CL, Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008;14(14):4572-83
  • Zwaan CM, Kearns P, Caron H, The role of the ‘innovative therapies for children with cancer’ (ITCC) European consortium. Cancer Treat Rev 2010;36(4):328-34
  • ITCC, Innovative Therapies for Children with Cancer (ITCC) European Consortium. Available from: http://www.itcc-consortium.org/ [Last accessed 8 July 2010]
  • KCK, Kids Cancer Kinome. Available from: http://www.kidscancerkinome.org/ [Last accessed 8 July 2010]
  • Holst MI, Westerhout EM, Kool M, Targeting overexpressed Aurora kinases in childhood medulloblastoma: anti-proliferative effects of small molecule inhibitors ZM44739, VX680 and shRNA. XVIIth International Congress of Neuropathology, Salzburg, Austria; 2010
  • OLPA, U.S.O.o.L.P.a.A., Best Pharmaceuticals for Children Act, Public Law 107-109. Available from: http://olpa.od.nih.gov/legislation/107/publiclaws/1best.asp [Last accessed 8 July 2010]
  • EMA, E.M.A., Medicines for children. Available from: http://www.ema.europa.eu/htms/human/paediatrics/introduction.htm [Last accessed 8 July 2010]
  • EMA, E.M.A., REGULATION (EC) No 1901/2006 on medicinal products for paediatric use. Available from: http://ec.europa.eu/health/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf [Last accessed 8 July 2010]
  • EMA, E.M.A., Nonclinical Evaluation for Anticancer Pharmaceuticals, EMEA/CHMP/ICH/646107/2008. Available from: http://www.ema.europa.eu/pdfs/human/ich/64610708enfin.pdf [Last accessed 8 July 2010]
  • EMA, E.M.A., Guideline on the need for non-clinical testing in juvenile animals on human pharmaceuticals for pediatric indications. EMEA/CHMP/SWP/169215/2005. Available from: http://www.ema.europa.eu/pdfs/human/swp/16921505en.pdf [Last accessed 8 July 2010]
  • Smith M, Bernstein M, Bleyer WA, Conduct of phase I trials in children with cancer. J Clin Oncol 1998;16(3):966-78
  • Estlin EJ, Ablett S, Newell DR, Phase I trials in paediatric oncology–the European perspective. The New Agents Group of the United Kingdom Childrens Cancer Study Group. Invest New Drugs 1996;14(1):23-32
  • Houghton PJ, Cheshire PJ, Myers L, Evaluation of 9-dimethylaminomethyl-10-hydroxycamptothecin against xenografts derived from adult and childhood solid tumors. Cancer Chemother Pharmacol 1992;31(3):229-39
  • Carol H, Houghton PJ, Morton CL, Initial testing of topotecan by the pediatric preclinical testing program. Pediatr Blood Cancer 2010;54(5):707-15
  • Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004;40(6):827-36
  • Huse JT, Holland EC. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 2009;19(1):132-43
  • Sharpless NE, Depinho RA. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 2006;5(9):741-54
  • Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 1997;273(4 Pt 1):C1109-23
  • Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids–old hat or new challenge? Int J Radiat Biol 2007;83(11-12):849-71
  • Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003;9(11):4227-39
  • Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003;2(4 Suppl 1):S134-9
  • Johnson JI, Decker S, Zaharevitz D, Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001;84(10):1424-31
  • Bax DA, Little SE, Gaspar N, Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One 2009;4(4):e5209
  • Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007;130(4):601-10
  • De Witt Hamer PC, Van Tilborg AA, Eijk PP, The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 2008;27(14):2091-6
  • Ernst A, Hofmann S, Ahmadi R, Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 2009;15(21):6541-50
  • Friedrich J, Seidel C, Ebner R, Spheroid-based drug screen: considerations and practical approach. Nat Protocol 2009;4(3):309-24
  • Workman P, Aboagye EO, Balkwill F, Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010;102(11):1555-77
  • Heyer J, Kwong LN, Lowe SW, Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 2010;10(7):470-80
  • Olive KP, Jacobetz MA, Davidson CJ, Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009;324(5933):1457-61
  • Weiss WA, Aldape K, Mohapatra G, Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997;16(11):2985-95
  • Chesler L, Goldenberg DD, Seales IT, Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res 2007;67(19):9435-42
  • Sarker D, Workman P. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res 2007;96:213-68
  • Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452(7187):580-9
  • Kimura H, Ng JM, Curran T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 2008;13(3):249-60
  • Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 2004;9(2):197-206
  • Paugh BS, Qu C, Jones C, Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 2010;28(18):3061-8
  • Verhaak RG, Hoadley KA, Purdom E, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98-110
  • Van Meir EG, Hadjipanayis CG, Norden AD, Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010;60(3):166-93
  • Servidei T, Riccardi A, Sanguinetti M, Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol 2006;208(1):220-8
  • Oertel S, Krempien R, Lindel K, Human glioblastoma and carcinoma xenograft tumors treated by combined radiation and imatinib (Gleevec). Strahlenther Onkol 2006;182(7):400-7
  • Pollack IF, Jakacki RI, Blaney SM, Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 2007;9(2):145-60
  • Porkka K, Koskenvesa P, Lundan T, Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood 2008;112(4):1005-12
  • Kolb EA, Gorlick R, Houghton PJ, Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50(6):1198-206
  • Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 2006;7(3):241-8
  • Zarghooni M, Bartels U, Lee E, Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 2010;28(8):1337-44
  • Hashizume R, Ozawa T, Dinca EB, A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 2010;96(2):151-9
  • Jallo GI, Volkov A, Wong C, A novel brainstem tumor model: functional and histopathological characterization. Childs Nerv Syst 2006;22(12):1519-25
  • Becher OJ, Hambardzumyan D, Walker TR, Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 2010;70(6):2548-57
  • Geoerger B, Hargrave D, Thomas F, Pharmacokinetic and biological study of erlotinib in children as monotherapy for refractory brain tumors or with radiation for newly diagnosed brain stem gliomas. J Clin Oncol 2009;27(15S): abstract 10019
  • Maris JM, Hogarty MD, Bagatell R, Neuroblastoma. Lancet 2007;369(9579):2106-20
  • Matthay KK, Reynolds CP, Seeger RC, Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol 2009;27(7):1007-13
  • Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010;362(23):2202-11
  • Mosse YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res 2009;15(18):5609-14
  • Janoueix-Lerosey I, Lequin D, Brugieres L, Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008;455(7215):967-70
  • COG-ADVL0912, N., U.S. National Cancer Institute, Phase I/II Study of MET Tyrosine Kinase Inhibitor PF-02341066 in Children With Relapsed or Refractory Solid Tumors or Anaplastic Large Cell Lymphoma. Available from: http://www.cancer.gov/clinicaltrials/COG-ADVL0912 [Last accessed 8 July 2010]
  • Gazdar AF. Personalized medicine and inhibition of EGFR signaling in lung cancer. N Engl J Med 2009;361(10):1018-20
  • Passoni L, Longo L, Collini P, Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res 2009;69(18):7338-46
  • Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol 2007;6(12):1073-85
  • Romer J, Curran T. Targeting medulloblastoma: small-molecule inhibitors of the Sonic Hedgehog pathway as potential cancer therapeutics. Cancer Res 2005;65(12):4975-8
  • Hidalgo M, Maitra A. The hedgehog pathway and pancreatic cancer. N Engl J Med 2009;361(21):2094-6
  • Thompson MC, Fuller C, Hogg TL, Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006;24(12):1924-31
  • Kool M, Koster J, Bunt J, Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008;3(8):e3088
  • Berman DM, Karhadkar SS, Hallahan AR, Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002;297(5586):1559-61
  • Rudin CM, Hann CL, Laterra J, Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009;361(12):1173-8
  • St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999;13(16):2072-86
  • Yauch RL, Dijkgraaf GJ, Alicke B, Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009;326(5952):572-4
  • Hughes DP. Novel agents in development for pediatric sarcomas. Curr Opin Oncol 2009;21(4):332-7
  • Prieur A, Tirode F, Cohen P, EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 2004;24(16):7275-83
  • Kim SY, Toretsky JA, Scher D, The role of IGF-1R in pediatric malignancies. Oncologist 2009;14(1):83-91
  • Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer 2003;107(6):873-7
  • Olmos D, Postel-Vinay S, Molife LR, Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol 2010;11(2):129-35
  • Kolb EA, Gorlick R, Houghton PJ, Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50(6):1190-7
  • Seeger RC, Brodeur GM, Sather H, Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985;313(18):1111-16
  • Negroni A, Scarpa S, Romeo A, Decrease of proliferation rate and induction of differentiation by a MYCN antisense DNA oligomer in a human neuroblastoma cell line. Cell Growth Differ 1991;2(10):511-18
  • Schmidt ML, Salwen HR, Manohar CF, The biological effects of antisense N-myc expression in human neuroblastoma. Cell Growth Differ 1994;5(2):171-8
  • Otto T, Horn S, Brockmann M, Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009;15(1):67-78
  • Chesler L, Schlieve C, Goldenberg DD, Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 2006;66(16):8139-46
  • Molenaar JJ, Ebus ME, Geerts D, Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA 2009;106(31):12968-73
  • Maris JM, Morton CL, Gorlick R, Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer 2010;55(1):26-34
  • COG-ADVL0921, N., U.S. National Cancer Institute, Phase II Study of Aurora A Kinase Inhibitor MLN8237 in Pediatric Patients With Recurrent or Refractory Solid Tumors or Leukemia. Available from: http://www.cancer.gov/clinicaltrials/COG-ADVL0921 [Last accessed 8 July 2010]
  • Mosse YP, Lipsitz EG, Maris JM, A pediatric phase I trial and pharmacokinetic study of MLN8237, an oral selective small molecule inhibitor of aurora a kinase: a Children's Oncology Group Phase I Consortium study. J Clin Oncol 2010;28(15S): abstract 9529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.