451
Views
19
CrossRef citations to date
0
Altmetric
Reviews

The use of Xenopus oocytes in drug screening

, & , DSc PhD (Professor)
Pages 141-153 | Published online: 18 Jan 2011

Bibliography

  • Venter JC, Adams MD, Myers EW, The sequence of the human genome. Science 2001;291:1304-51
  • Ashcroft FM. From molecule to malady. Nature 2006;440:440-7
  • Farkas AS, Nattel S. Minimizing repolarization-related proarrhythmic risk in drug development and clinical practice. Drugs 2010;70:573-603
  • Stuhmer W. Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol 1998;293:280-300
  • Hansen KB, Brauner-Osborne H, Egebjerg J. Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Comb Chem High Throughput Screen 2008;11:304-15
  • Hansen KB, Brauner-Osborne H. FLIPR assays of intracellular calcium in GPCR drug discovery. Methods Mol Biol 2009;552:269-78
  • Takahashi A, Camacho P, Lechleiter JD, Herman B. Measurement of intracellular calcium. Physiol Rev 1999;79:1089-125
  • Asmild M, Oswald N, Krzywkowski KM, Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptors Channels 2003;9:49-58
  • Mathes C, Friis S, Finley M, Liu Y. QPatch: the missing link between HTS and ion channel drug discovery. Comb Chem High Throughput Screen 2009;12:78-95
  • Dunlop J, Bowlby M, Peri R, High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 2008;7:358-68
  • Dunlop J, Bowlby M, Peri R, Ion channel screening. Comb Chem High Throughput Screen 2008;11:514-22
  • Stuhmer W, Parekh AB. Electrophysiological recordings from Xenopus oocytes. In: Sakmann B, Neher E, editors, Single-channel recording. 2nd edition. Springer, New York; 2009
  • Hansen KB, Brauner-Osborne H. Xenopus oocyte electrophysiology in GPCR drug discovery. Methods Mol Biol 2009;552:343-57
  • Goldin AL. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 1992;207:266-79
  • Bossi E, Fabbrini MS, Ceriotti A. Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 2007;375:107-31
  • Goldin AL, Sumikawa K. Preparation of RNA for injection into Xenopus oocytes. Methods Enzymol 1992;207:279-97
  • Matten WT, Vande Woude GF. Microinjection into Xenopus oocytes. Methods Enzymol 1995;254:458-66
  • Swanson R, Folander K. In vitro synthesis of RNA for expression of ion channels in Xenopus oocytes. Methods Enzymol 1992;207:310-19
  • Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971;233:177-82
  • Gurdon JB, Wickens MP. The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol 1983;101:370-86
  • Soreq H. The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC Crit Rev Biochem 1985;18:199-238
  • Bertrand D, Ballivet M, Rungger D. Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus oocytes. Proc Natl Acad Sci USA 1990;87:1993-7
  • Gundersen CB, Miledi R, Parker I. Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci 1983;219:103-9
  • Miledi R, Parker I, Sumikawa K. Recording of single gamma-aminobutyrate- and acetylcholine-activated receptor channels translated by exogenous mRNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci 1983;218:481-4
  • Brown EM, Gamba G, Riccardi D, Cloning and characterization of an extracellular Ca2(+)-sensing receptor from bovine parathyroid. Nature 1993;366:575-80
  • Gundersen CB, Miledi R, Parker I. Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes. Proc R Soc Lond B Biol Sci 1984;221:127-43
  • Hollmann M, O'Shea-Greenfield A, Rogers SW, Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature 1989;342:643-8
  • Masu M, Tanabe Y, Tsuchida K, Sequence and expression of a metabotropic glutamate receptor. Nature 1991;349:760-5
  • Miledi R, Parker I, Sumikawa K. Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO J 1982;1:1307-12
  • Moriyoshi K, Masu M, Ishii T, Molecular cloning and characterization of the rat NMDA receptor. Nature 1991;354:31-7
  • Bowie D, Smart TG. Interplay between expressed non-NMDA receptors and endogenous calcium-activated chloride currents in Xenopus laevis oocytes. Neurosci Lett 1993;151:4-8
  • Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem 1987;22:317-87
  • Anegawa NJ, Guttmann RP, Grant ER, N-Methyl-D-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production. Brain Res Mol Brain Res 2000;77:163-75
  • Boeckman FA, Aizenman E. Pharmacological properties of acquired excitotoxicity in Chinese hamster ovary cells transfected with N-methyl-D-aspartate receptor subunits. J Pharmacol Exp Ther 1996;279:515-23
  • Christiansen B, Hansen KB, Wellendorph P, Brauner-Osborne H. Pharmacological characterization of mouse GPRC6A, an L-alpha-amino-acid receptor modulated by divalent cations. Br J Pharmacol 2007;150:798-807
  • Christiansen B, Wellendorph P, Brauner-Osborne H. Activity of L-alpha-amino acids at the promiscuous goldfish odorant receptor 5.24. Eur J Pharmacol 2006;536:98-101
  • Cik M, Chazot PL, Stephenson FA. Expression of NMDAR1-1a (N598Q)/NMDAR2A receptors results in decreased cell mortality. Eur J Pharmacol 1994;266:R1-3
  • Kuang D, Yao Y, Lam J, Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem 2005;93:383-91
  • Thomsen C, Hansen L, Suzdak PD. L-glutamate uptake inhibitors may stimulate phosphoinositide hydrolysis in baby hamster kidney cells expressing mGluR1a via heteroexchange with L-glutamate without direct activation of mGluR1a. J Neurochem 1994;63:2038-47
  • Wellendorph P, Hansen KB, Balsgaard A, Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 2005;67:589-97
  • Castillo M, Mulet J, Gutierrez LM, Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Biol Chem 2005;280:27062-8
  • Priel A, Kolleker A, Ayalon G, Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 2005;25:2682-6
  • Schmidt C, Hollmann M. Apparent homomeric NR1 currents observed in Xenopus oocytes are caused by an endogenous NR2 subunit. J Mol Biol 2008;376:658-70
  • Schmidt C, Klein C, Hollmann M. Xenopus laevis oocytes endogenously express all subunits of the ionotropic glutamate receptor family. J Mol Biol 2009;390:182-95
  • Williams ME, Burton B, Urrutia A, Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem 2005;280:1257-63
  • Papke RL, Smith-Maxwell C. High throughput electrophysiology with Xenopus oocytes. Comb Chem High Throughput Screen 2009;12:38-50
  • Papke RL, Stokes C. Working with OpusXpress: methods for high volume oocyte experiments. Methods 2010;51:121-33
  • Leisgen C, Kuester M, Methfessel C. The roboocyte: automated electrophysiology based on Xenopus oocytes. Methods Mol Biol 2007;403:87-109
  • Schnizler K, Kuster M, Methfessel C, Fejtl M. The roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates. Receptors Channels 2003;9:41-8
  • Pehl U, Leisgen C, Gampe K, Guenther E. Automated higher-throughput compound screening on ion channel targets based on the Xenopus laevis oocyte expression system. Assay Drug Dev Technol 2004;2:515-24
  • Shieh CC, Trumbull JD, Sarthy JF, Automated Parallel Oocyte Electrophysiology Test station (POETs): a screening platform for identification of ligand-gated ion channel modulators. Assay Drug Dev Technol 2003;1:655-63
  • Trumbull JD, Maslana ES, McKenna DG, High throughput electrophysiology using a fully automated, multiplexed recording system. Receptors Channels 2003;9:19-28
  • Witchel HJ, Milnes JT, Mitcheson JS, Hancox JC. Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J Pharmacol Toxicol Methods 2002;48:65-80
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5:993-6
  • Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 2004;25:413-22
  • Howard AD, McAllister G, Feighner SD, Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol Sci 2001;22:132-40
  • Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008;7:339-57
  • Bachner D, Kreienkamp H, Weise C, Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett 1999;457:522-4
  • Birgul N, Weise C, Kreienkamp HJ, Richter D. Reverse physiology in drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J 1999;18:5892-900
  • Lynch KR, O'Neill GP, Liu Q, Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399:789-93
  • Speca DJ, Lin DM, Sorensen PW, Functional identification of a goldfish odorant receptor. Neuron 1999;23:487-98
  • Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 1997;37:167-203
  • Hamm HE. The many faces of G protein signaling. J Biol Chem 1998;273:669-72
  • Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 2004;103:21-80
  • Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3:639-50
  • Minami K, Uezono Y, Shiraishi M, Analysis of the effects of halothane on Gi-coupled muscarinic M2 receptor signaling in Xenopus oocytes using a chimeric G alpha protein. Pharmacology 2004;72:205-12
  • Ohana L, Barchad O, Parnas I, Parnas H. The metabotropic glutamate G-protein-coupled receptors mGluR3 and mGluR1a are voltage-sensitive. J Biol Chem 2006;281:24204-15
  • Yamashita S, Minakami R, Sugiyama H. The G alpha protein GL2 alpha improves the ability to detect the subthreshold expressions of receptors linked to phospholipase C in Xenopus oocytes. Jpn J Physiol 1997;47:67-72
  • Houamed KM, Kuijper JL, Gilbert TL, Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 1991;252:1318-21
  • Clapham DE. Direct G protein activation of ion channels? Annu Rev Neurosci 1994;17:441-64
  • Lingenhoehl K, Brom R, Heid J, Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology 1999;38:1667-73
  • Sonders MS, Amara SG. Channels in transporters. Curr Opin Neurobiol 1996;6:294-302
  • Meinild AK, Loo DD, Skovstrup S, Elucidating conformational changes in the gamma-aminobutyric acid transporter-1. J Biol Chem 2009;284:16226-35
  • Sucic S, Dallinger S, Zdrazil B, The N terminus of monoamine transporters is a lever required for the action of amphetamines. J Biol Chem 2010;285:10924-38
  • Meinild AK, Sitte HH, Gether U. Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter. J Biol Chem 2004;279:49671-9
  • Larsson HP, Wang X, Lev B, Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc Natl Acad Sci USA 2010;107:13912-17
  • Poulsen H, Khandelia H, Morth JP, Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase. Nature 2010;467:99-102
  • Jensen AA, Brauner-Osborne H. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochem Pharmacol 2004;67:2115-27
  • Kvist T, Christiansen B, Jensen AA, Brauner-Osborne H. The four human gamma-aminobutyric acid (GABA) transporters: pharmacological characterization and validation of a highly efficient screening assay. Comb Chem High Throughput Screen 2009;12:241-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.