53
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving

, DSc (Principal Scientist)
Pages 419-435 | Published online: 26 Feb 2011

Bibliography

  • Hartley O, Klasse PJ, Sattentau QJ, Moore JP. V3: HIV's Switch-Hitter. AIDS Res Hum Retroviruses 2005;6:171-89
  • Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998;280:1884-8
  • Sirois S, Sing T, Chou KC. HIV-1 gp120 V3 loop for structure-based drug design. Curr Protein Pept Sci 2005;6:413-22
  • Dalgleish A, Beverley P, Clapham P, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984;312:763-7
  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996;272:872-7
  • Cocchi F, DeVico AL, Garzino-Demo A, The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 1996;2:1244-7
  • Wolk T, Schreiber M. N-glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization. Med Microbiol Immunol 2006;195:165-72
  • Javaherian K, Langlois AJ, McDanal C, Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc Natl Acad Sci USA 1989;86:6768-72
  • Goudsmit J, Debouck C, Meloen RH, Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early-specific antibodies in experimentally infected monkeys. Proc Natl Acad Sci USA 1988;85:4478-82
  • Vogel T, Kurth R, Norley S. The majority of neutralizing Abs in HIV-1-infected patients recognize linear V3 loop sequences. Studies using HIV-1MN multiple antigenic peptides. J Immunol 1994;153:1895-904
  • LaRosa GJ, Davide JP, Weinhold K, Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science 1990;249:932-5
  • Looney DJ, Fischer AG, Putney SD, Type-restricted neutralization of molecular clones of human immunodeficiency virus. Science 1988;241:357-9
  • Meloen RH, Liskamp RM, Goudsmit J. Specificity and function of the individual amino acids of an important determinant of human immunodeficiency virus type 1 that induces neutralizing activity. J Gen Virol 1989;70:1505-12
  • Meyers G, Korber B, Wain-Hobson S, Human retroviruses and AIDS 1993: a compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos, N. Mex.; 1993
  • Kwong PD, Wyatt R, Robinson J, Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998;393:648-59
  • Kwong PD, Wyatt R, Majeed S, Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 2000;8:1329-39
  • Huang CC, Tang M, Zhang MY, Structure of a V3-containing HIV-1 gp120 core. Science 2005;310:1025-8
  • Huang CC, Lam SN, Acharya P, Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 2007;317:1930-4
  • Chen L, Do Kwon Y, Zhou T, Structural basis of immune evasion at the site of CD4 attachment on HIV-1 GP120. Science 2009;326:1123-7
  • Chandrasekhar K, Profy AT, Dyson HJ. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry 1991;30:9187-94
  • Rini JM, Stanfield RL, Stura EA, Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop. Proc Natl Acad Sci USA 1993;90:6325-9
  • Ghiara JB, Stura EA, Stanfield RL, Crystal structure of the principal neutralization site of HIV-1. Science 1994;264:82-5
  • Ghiara JB, Ferguson DC, Satterthwait AC, Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. J Mol Biol 1997;266:31-9
  • Stanfield RL, Cabezas E, Satterthwait AC, Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing Fabs. Structure 1999;7:131-42
  • Stanfield RL, Ghiara JB, Saphire EO, Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology 2003;315:159-73
  • Stanfield RL, Gorny MK, Williams C, Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure 2004;12:193-204
  • Ding J, Smith AD, Geisler SC, Crystal structure of a human rhinovirus that displays part of the HIV-1 V3 loop and induces neutralizing antibodies against HIV-1. Structure 2002;10:999-1011
  • Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J Virol 2006;80:6093-105
  • Bell CH, Pantophlet R, Schiefner A, Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J Mol Biol 2008;375:969-78
  • Dhillon AK, Stanfield RL, Gorny MK, Structure determination of an anti-HIV-1 Fab 447-52D-peptide complex from an epitaxially twinned data set. Acta Crystallogr D 2008;64:792-802
  • Burke V, Williams C, Sukumaran M, Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 2009;17:1538-46
  • Totrov M, Jiang X, Kong XP, Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology 2010;405:513-23
  • Jiang X, Burke V, Totrov M, Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 2010;17:955-61
  • Catasti P, Fontenot JD, Bradbury EM, Gupta G. Local and global structural properties of the HIVMN V3 loop. J Biol Chem 1995;270:2224-32
  • Gupta G, Anantharamaiah GM, Scott DR, Solution structure of the V3 loop of a Thailand HIV isolate. J Biomol Struct Dyn 1993;11:345-66
  • Vu HM, de Lorimier R, Moody MA, Conformational preference of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV CANOA based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF. Biochemistry 1996;35:5158-65
  • Vranken WF, Budesinsky M, Martins JC. Conformational features of a synthetic cyclic peptide corresponding to the complete V3 loop of the RF HIV-1 strain in water and water/trifluoroethanol solutions. Eur J Biochem 1996;236:100-8
  • Sarma AV, Raju TV, Kunwar AC. NMR study of the peptide present in the principal neutralizing determinant (PND) of HIV-1 envelope glycoprotein gp120. J Biochem Biophys Methods 1997;34:83-98
  • Tolman RL, Bednarek MA, Johnson BA, Cyclic V3 loop-related HIV-1 conjugate vaccines. Int J Pept Protein Res 1993;41:455-66
  • Jelinek R, Terry TD, Gesell JJ, NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein. J Mol Biol 1997;266:649-55
  • Andrianov AM, Sokolov YuA. Structure and polymorphism of the principal neutralization site of Thailand HIV-1 isolate. J Biomol Struct Dyn 2003;20:603-14
  • Andrianov AM, Sokolov YuA. 3D structure model of the principal neutralizing epitope of Minnesota HIV-1 isolate. J Biomol Struct Dyn 2004;21:577-90
  • Andrianov AM. Dual spatial folds and different local structures of the HIV-1 immunogenic crown in various virus isolates. J Biomol Struct Dyn 2004;22:159-70
  • Vranken WF, Fant F, Budesinsky M, Borremans FAM. Conformational model for the consensus V3 loop of the envelope protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution. Eur J Biochem 2001;268:2620-8
  • Andrianov AM. Local structural properties of the V3 loop of Thailand HIV-1 isolate. J Biomol Struct Dyn 2002;19:973-90
  • Andrianov AM. Study on Conformational Homology of the HIV-1 gp120 protein V3 loop. Structural analysis of the HIV-RF and HIV-Thailand viral strains. Biochemistry (Moscow) 2007;1:125-30
  • Sherman SA, Andrianov AM, Akhrem AA. Method of determining protein conformations by the two-dimensional nuclear overhauser enhancement spectroscopy data. J Biomol Struct Dyn 1987;4:869-84
  • Sherman SA, Johnson ME. Derivation of locally accurate spatial protein structure from NMR data. Prog Biophys Mol Biol 1993;59:285-339
  • Rosen O, Sharon M, Quadt-Akabayov SR, Anglister J. Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion. Proc Natl Acad Sci USA 2006;13:13950-5
  • Andrianov AM, Veresov VG. Determination of structurally conservative amino acids of the HIV-1 protein gp120 V3 loop as promising targets for drug design by protein engineering approaches. Biochemistry (Moscow) 2006;71:906-14
  • Andrianov AM. Structural analysis of the HIV-1 gp120 V3 loop: application to the HIV-haiti isolates. J Biomol Struct Dyn 2007;24:597-608
  • Andrianov AM. Determining the invariant structure elements of the HIV-1 variable V3 loops: insight into the HIV-MN and HIV-haiti isolates. J Biomol Struct Dyn 2008;26:247-54
  • Sherman SA, Andrianov AM, Akhrem AA. Method of modeling protein structure by the two-dimensional nuclear magnetic resonance spectroscopy data; Application to the proteinase inhibitor BUSI IIA from bull seminal plasma. J Biomol Struct Dyn 1988;5:785-801
  • Andrianov AM, Anishchenko IV. Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design. J Biomol Struct Dyn 2009;27:179-94
  • Wang WK, Dudek T, Zhao YJ, CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120. Proc Natl Acad Sci USA 1998;95:5740-5
  • De Parseval A, Bobardt MD, Chatterji U, A highly conserved arginine in gp120 governs HIV-1 binding to both syndecans and CCR5 via sulfated motifs. J Biol Chem 2005;280:39493-504
  • Ogert RA, Lee MK, Ross W, N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J Virol 2001;75:5998-6006
  • McCaffrey RA, Saunders C, Hensel M, Stamatatos L. N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J Virol 2004;78:3279-95
  • Malenbaum SE, Yang D, Cavacini L, The N-terminal V3 loop glycan modulates the interaction of clade A and B human immunodeficiency virus type 1 envelopes with CD4 and chemokine receptors. J Virol 2000;74:11008-13
  • Sirois S, Touaibia M, Chou KC, Roy R. Glycosylation of HIV-1 gp120 V3 loop: towards the rational design of a synthetic carbohydrate vaccine. Curr Med Chem 2007;14:3232-42
  • Cormier EG, Dragic T. The crown and the stem V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with CCR5 coreceptor. J Virol 2002;76:8953-7
  • Tian H, Lan C, Chen YH. Sequence variation and consensus sequence of V3 loop on HIV-1 gp120. Immunol Lett 2002;83:231-3
  • Ivanoff LA, Looney DJ, McDanal C, Alteration of HIV-1 infectivity and neutralization by a single amino acid replacement in the V3 loop domain. AIDS Res Hum Retroviruses 1991;7:595-603
  • Lee SK, Pestano GA, Riley J, A single point mutation in HIV-1 V3 loop alters the immunogenic properties of rgp120. Arch Virol 2000;145:2087-103
  • Pantophlet R, Wrin T, Cavacini LA, Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitopes fine specificity. Virology 2008;381:251-60
  • Hu Q, Napier KB, Trent JO, Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization. J Mol Biol 2005;350:699-712
  • Anishchenko IV, Andrianov AM. Conformational analysis of the HIV-1 variable V3 loops: modeling of 3D structures and determination of the patterns in their spatial organization. Proc Natl Acad Sci Belarus 2010;54:84-91
  • Almond D, Kimura T, Kong X, Structural conservation predominates over sequence variability in the crown of HIV type 1's V3 loop. AIDS Res Hum Retroviruses 2010;26:717-23
  • Lobritz MA, Ratcliff AN, Arts EJ. HIV-1 entry, inhibitors, and resistance. Viruses 2010;2:1069-105
  • Tonini T, Barnet S, Donnelly J, Rappuoli R. Current approaches to developing a preventive HIV vaccine. Curr Opin Investig Drugs 2005;6:155-62
  • Hoxie JA. Toward an antibody-based HIV-1 vaccine. Annu Rev Med 2010;61:135-52
  • Brik A, Wong CH. HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 2003;1:5-14
  • Shafer RW, Rhee SY, Pillay D, HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. AIDS 2007;21:215-23
  • Kuritzkes DR. HIV-1 entry inhibitors: an overview. Curr Opin HIV AIDS 2009;4:82-7
  • Cotelle P. Patented HIV-1 integrase inhibitors (1998-2005). Rec Pat Anti Infective Drug Discov 2006;1:1-15
  • Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 1993;234:779-815
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 1995;91:43-56
  • Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small molecule docking methods. J Comput Aided Mol Des 2002;16:151-66
  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in Drug Design. Curr Top Med Chem 2010;10:95-115
  • Endrich MM, Gehring H. The V3 loop of human immunodeficiency virus type-1 envelope protein is a high-affinity ligand for immunophilins present in human blood. Eur J Biochem 1998;252:441-6
  • Franke EK, Yuan HEH, Luban J. Specific incorporation of cyclophhilin A into HIV-1 virions. Nature 1994;372:359-62
  • Saphire ACS, Bobardt MD, Gallay PA. Host cyclophilin A mediates HIV-1 attachment to target via heparans. EMBO J 1999;18:6771-85
  • Andrianov AM. Computational anti-AIDS drug design based on the analysis of the specific interactions between immunophilins and the HIV-1 gp120 V3 loop. Application to the FK506-binding protein. J Biomol Struct Dynam 2008;26:49-56
  • Andrianov AM. Immunophilins and HIV-1 V3 loop for structure-based anti-AIDS drug design. J Biomol Struct Dyn 2009;26:445-54
  • Andrianov AM, Anishchenko IV. Computer-assisted anti-AIDS drug development: cyclophilin B against the HIV-1 subtype A V3 loop. Health 2010;2:661-71
  • Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 2008;12:292-6
  • Vetrivel U, Sankar P, Nagarajan NK, Subramanian G. Peptidomimetics based inhibitor design for HIV-1 gp120 attachment protein. J Proteomics Bioinform 2009;2:481-4
  • Fantini J, Cook DJ, Nathanson N, Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proc Natl Acad Sci USA 1993;90:2700-4
  • Fantini J, Hammache D, Delezay O, Synthetic soluble analogs of Galactosylceramide (GalCer) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry. J Biol Chem 1997;272:7245-52
  • Garg H, Francella N, Tony KA, Glycoside analogs of beta-galactosylceramide, a novel class of small molecule antiviral agents that inhibit HIV-1 entry. Antiviral Res 2008;80:54-61
  • Vzorov AN, Dixon DW, Trommel JS, Inactivation of human immunodeficiency virus type 1 by porphyrins. Antimicrob Agents Chemother 2002;46:3917-25
  • Debnath AK, Jiang SB, Lin SK, Anti-HIV-1 activity of carborane derivatives of porphyrins. Med Chem Res 1999;9:267-75
  • Dixon DW, Marzilli LG, Schinazi RF. Porphyrins as agents against the human immunodeficiency virus. Ann NY Acad Sci 1990;616:511-13
  • Debnath AK, Jiang S, Strick N, Three-dimensional structure-activity analysis of a series of porphyrin derivatives with anti-HIV-1 activity targeted to the V3 loop of the gp120 envelope glycoprotein of the human immunodeficiency virus type 1. J Med Chem 1994;37:1099-108
  • Watanabe K, Negi S, Sugiura Y, Binding of multivalent anionic porphyrins to V3 loop fragments of an HIV-1 envelope and their antiviral activity. Chem Asian J 2010;5:825-34
  • Chou KC. Prediction of human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem 1996;233:1-14
  • Chou KC. Prediction of protein signal sequences. Curr Prot Pept Sci 2002;3:615-22
  • Chou KC. Prediction of tight turns and their types in proteins. Anal Biochem 2000;286:1-16
  • Wallace AC, Borkakoti N, Thornton JM. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci 1997;6:2308-23
  • Chou KC, Elrod DW. Protein subcellular location prediction. Prot Eng 1999;12:107-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.