331
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses

, , , &
Pages 613-632 | Published online: 19 May 2012

Bibliography

  • Bray M. Pathogenesis of viral hemorrhagic fever. Curr Opin Immunol 2005;17(4):399-403
  • Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat Med 2004;10(12 Suppl):S110-21
  • McCormick JB, Fisher-Hoch SP. Lassa fever. Curr Top Microbiol Immunol 2002;262:75-109
  • Buchmeier MJ, de La Torre JC, Peters CJ. Arenaviridae:the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields Virology. 5th edition. Lippincott Williams & Wilkins, Philadelphia; 2006. p. 1791-827
  • Enria DA, Briggiler AM, Sanchez Z. Treatment of argentine hemorrhagic fever. Antiviral Res 2008;78(1):132-9
  • Peters CJ, Kuehne RW, Mercado RR, Hemorrhagic fever in Cochabamba, Bolivia, 1971. Am J Epidemiol 1974;99(6):425-33
  • Aguilar PV, Camargo W, Vargas J, Reemergence of Bolivian hemorrhagic fever, 2007-2008. Emerg Infect Dis 2009;15(9):1526-8
  • NIAID Category Priority Pathogens. 2012. Available from: http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/pages/cata.aspx
  • National Select Agent Registry. 2012. Available from: http://www.selectagents.gov/
  • Borio L, Inglesby T, Peters CJ, Hemorrhagic fever viruses as biological weapons: medical and public health management. J Am Med Assoc 2002;287(18):2391-405
  • Charrel RN, de Lamballerie X. Arenaviruses other than Lassa virus. Antiviral Res 2003;57(1-2):89-100
  • Briese T, Paweska JT, McMullan LK, Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog 2009;5(5):e1000455
  • Delgado S, Erickson BR, Agudo R, Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog 2008;4(4):e1000047
  • Clegg JC. Molecular phylogeny of the arenaviruses. Curr Top Microbiol Immunol 2002;262:1-24
  • Jay MT, Glaser C, Fulhorst CF. The arenaviruses. J Am Vet Med Assoc 2005;227(6):904-15
  • Lecompte E, Ter Meulen J, Emonet S, Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology 2007;364(1):178-83
  • Oldstone MB. Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr Top Microbiol Immunol 2002;262:V-XII
  • Charrel RN, Lemasson JJ, Garbutt M, New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology 2003;317(2):191-6
  • Erickson BR, Delgado S, Aguda R, A newly discovered arenavirus associated with a fatal hemorrhagic fever case in Bolivia. Abstracts of the XIIIth International Conference on Negative Strand Viruses; 17 – 22 June 2006; Salamanca, Spain; 2006. p. 165
  • Salvato MS, Clegg JCS, Buchmeier MJ, Family arenaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy – Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, United Kingdom; 2011. p. 715-23
  • Bowen MD, Peters CJ, Nichol ST. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 1996;219(1):285-90
  • Rowe WP, Pugh WE, Webb PA, Serological relationship of the Tacaribe complex of viruses to lymphocytic choriomeningitis virus. J Virol 1970;5(3):289-92
  • Cajimat MN, Fulhorst CF. Phylogeny of the Venezuelan arenaviruses. Virus Res 2004;102(2):199-206
  • Gonzalez JP, Sanchez A, Rico-Hesse R. Molecular phylogeny of Guanarito virus, an emerging arenavirus affecting humans. Am J Trop Med Hyg 1995;53(1):1-6
  • Charrel RN, Feldmann H, Fulhorst CF, Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun 2002;296(5):1118-24
  • Salazar-Bravo J, Ruedas LA, Yates TL. Mammalian reservoirs of arenaviruses. Curr Top Microbiol Immunol 2002;262:25-63
  • Johnson KM, Mackenzie RB, Webb PA, Chronic infection of rodents by Machupo virus. Science 1965;150(703):1618-19
  • Johnson KM, Kuns ML, Mackenzie RB, Isolation of Machupo virus from wild rodent Calomys callosus. Am J Trop Med Hyg 1966;15(1):103-6
  • Fulhorst CF, Bowen MD, Salas RA, Natural rodent host associations of Guanarito and pirital viruses (Family Arenaviridae) in central Venezuela. Am J Trop Med Hyg 1999;61(2):325-30
  • Mills JN, Ellis BA, McKee KT Jr, Junin virus activity in rodents from endemic and nonendemic loci in central Argentina. Am J Trop Med Hyg 1991;44(6):589-97
  • Hugot JP, Gonzalez JP, Denys C. Evolution of the Old World Arenaviridae and their rodent hosts: generalized host-transfer or association by descent? Infect Genet Evol 2001;1(1):13-20
  • Bowen MD, Peters CJ, Nichol ST. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol 1997;8(3):301-16
  • Mackenzie RB, Beye HK, Valverde L, Epidemic hemorrhagic fever in Bolivia. I. A preliminary report of the epidemiologic and clinical findings in a new epidemic area in South America. Am J Trop Med Hyg 1964;13:620-5
  • Johnson KM, Wiebenga NH, Mackenzie RB, Virus isolations from human cases of hemorrhagic fever in Bolivia. Proc Soc Exp Biol Med 1965;118:113-18
  • Kuns ML. Epidemiology of Machupo virus infection. II. Ecological and control studies of hemorrhagic fever. Am J Trop Med Hyg 1965;14(5):813-16
  • Buchmeier MJ. Arenaviruses: protein structure and function. Curr Top Microbiol Immunol 2002;262:159-73
  • Meyer BJ, de la Torre JC, Southern PJ. Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 2002;262:139-57
  • Auperin DD, Galinski M, Bishop DH. The sequences of the N protein gene and intergenic region of the S RNA of pichinde arenavirus. Virology 1984;134(1):208-19
  • Wilson SM, Clegg JC. Sequence analysis of the S RNA of the African arenavirus Mopeia: an unusual secondary structure feature in the intergenic region. Virology 1991;180(2):543-52
  • Buchmeier MJ, Southern PJ, Parekh BS, Site-specific antibodies define a cleavage site conserved among arenavirus GP-C glycoproteins. J Virol 1987;61(4):982-5
  • Kunz S, Edelmann KH, de la Torre JC, Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 2003;314(1):168-78
  • Lenz O, ter Meulen J, Klenk HD, The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA 2001;98(22):12701-5
  • Beyer WR, Popplau D, Garten W, Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 2003;77(5):2866-72
  • Daelli MG, Coto CE. Inhibition of the production of infectious particles in cells infected with Junin virus in the presence of tunicamycin. Rev Argent Microbiol 1982;14(3):171-6
  • Eichler R, Lenz O, Garten W, The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 2006;3:41
  • Gangemi JD, Rosato RR, Connell EV, Structural polypeptides of Machupo virus. J Gen Virol 1978;41(1):183-8
  • Padula PJ, de Martinez Segovia ZM. Replication of Junin virus in the presence of tunicamycin. Intervirology 1984;22(4):227-31
  • Wright KE, Spiro RC, Burns JW, Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus. Virology 1990;177(1):175-83
  • Froeschke M, Basler M, Groettrup M, Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. J Biol Chem 2003;278(43):41914-20
  • York J, Romanowski V, Lu M, The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol 2004;78(19):10783-92
  • Agnihothram SS, York J, Nunberg JH. Role of the stable signal peptide and cytoplasmic domain of G2 in regulating intracellular transport of the Junin virus envelope glycoprotein complex. J Virol 2006;80(11):5189-98
  • Abraham J, Kwong JA, Albarino CG, Host-Species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic New World Clade B arenaviruses. PLoS Path 2009;5(4):e1000358.
  • Radoshitzky SR, Abraham J, Spiropoulou CF, Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 2007;446(7131):92-6
  • Radoshitzky SR, Kuhn JH, Spiropoulou CF, Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci USA 2008;105(7):2664-9
  • Helguera G, Jemielity S, Abraham J, An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all New World hemorrhagic fever arenaviruses. J Virol 2012;86(7):4024-8
  • Martinez MG, Cordo SM, Candurra NA. Characterization of Junin arenavirus cell entry. J Gen Virol 2007;88(Pt 6):1776-84
  • Vela EM, Zhang L, Colpitts TM, Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 2007;369(1):1-11
  • Castilla V, Mersich SE, Candurra NA, The entry of Junin virus into Vero cells. Arch Virol 1994;136(3-4):363-74
  • Glushakova SE, Lukashevich IS. Early events in arenavirus replication are sensitive to lysosomotropic compounds. Arch Virol 1989;104(1-2):157-61
  • Glushakova SE, Iakuba AI, Vasiuchkov AD, Lysosomotropic agents inhibit the penetration of arenaviruses into a culture of BHK-21 and Vero cells. Vopr Virusol 1990;35(2):146-50
  • Kunz S, Borrow P, Oldstone MB. Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 2002;262:111-37
  • Oldenburg J, Reignier T, Flanagan ML, Differences in tropism and pH dependence for glycoproteins from the Clade B1 arenaviruses: implications for receptor usage and pathogenicity. Virology 2007;364(1):132-9
  • Martinez MG, Forlenza MB, Candurra NA. Involvement of cellular proteins in Junin arenavirus entry. Biotechnol J 2009;4(6):866-70
  • Martinez MG, Cordo SM, Candurra NA. Involvement of cytoskeleton in Junin virus entry. Virus Res 2008;138(1-2):17-25
  • Linero FN, Scolaro LA. Participation of the phosphatidylinositol 3-kinase/Akt pathway in Junin virus replication in vitro. Virus Res 2009;145(1):166-70
  • York J, Nunberg JH. Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 2006;80(15):7775-80
  • York J, Nunberg JH. Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol 2009;83(9):4121-6
  • Di Simone C, Buchmeier MJ. Kinetics and pH dependence of acid-induced structural changes in the lymphocytic choriomeningitis virus glycoprotein complex. Virology 1995;209(1):3-9
  • Di Simone C, Zandonatti MA, Buchmeier MJ. Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology 1994;198(2):455-65
  • Glushakova SE, Lukashevich IS, Baratova LA. Prediction of arenavirus fusion peptides on the basis of computer analysis of envelope protein sequences. FEBS Lett 1990;269(1):145-7
  • Glushakova SE, Omelyanenko VG, Lukashevitch IS, The fusion of artificial lipid membranes induced by the synthetic arenavirus ‘fusion peptide'. Biochim Biophys Acta 1992;1110(2):202-8
  • Eschli B, Quirin K, Wepf A, Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol 2006;80(12):5897-907
  • Meyer BJ, Southern PJ. Concurrent sequence analysis of 5′ and 3′ RNA termini by intramolecular circularization reveals 5′ nontemplated bases and 3′ terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs. J Virol 1993;67(5):2621-7
  • Singh MK, Fuller-Pace FV, Buchmeier MJ, Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus. Virology 1987;161(2):448-56
  • Southern PJ, Singh MK, Riviere Y, Molecular characterization of the genomic S RNA segment from lymphocytic choriomeningitis virus. Virology 1987;157(1):145-55
  • Garcin D, Kolakofsky D. A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 1990;64(12):6196-203
  • Raju R, Raju L, Hacker D, Nontemplated bases at the 5′ ends of Tacaribe virus mRNAs. Virology 1990;174(1):53-9
  • Hass M, Golnitz U, Muller S, Replicon system for Lassa virus. J Virol 2004;78(24):13793-803
  • Lee AM, Rojek JM, Spiropoulou CF, Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem 2008;283(27):18734-42
  • Lopez N, Jacamo R, Franze-Fernandez MT. Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 2001;75(24):12241-51
  • Eichler R, Lenz O, Strecker T, Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep 2003;4(11):1084-8
  • Rojek JM, Lee AM, Nguyen N, Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J Virol 2008;82(12):6045-51
  • Eichler R, Lenz O, Strecker T, Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett 2003;538(1-3):203-6
  • Leung WC, Ghosh HP, Rawls WE. Strandedness of Pichinde virus RNA. J Virol 1977;22(1):235-7
  • Garcin D, Kolakofsky D. Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol 1992;66(3):1370-6
  • Cornu TI, de la Torre JC. RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J Virol 2001;75(19):9415-26
  • Cornu TI, de la Torre JC. Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol 2002;76(13):6678-88
  • Cornu TI, Feldmann H, de la Torre JC. Cells expressing the RING finger Z protein are resistant to arenavirus infection. J Virol 2004;78(6):2979-83
  • Jacamo R, Lopez N, Wilda M, Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis. J Virol 2003;77(19):10383-93
  • Kranzusch PJ, Whelan SP. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci USA 2011;108(49):19743-8
  • Dalton AJ, Rowe WP, Smith GH, Morphological and cytochemical studies on lymphocytic choriomeningitis virus. J Virol 1968;2(12):1465-78
  • Tesh RB, Jahrling PB, Salas R, Description of Guanarito virus (Arenaviridae: arenavirus), the etiologic agent of Venezuelan hemorrhagic fever. Am J Trop Med Hyg 1994;50(4):452-9
  • Eichler R, Strecker T, Kolesnikova L, Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res 2004;100(2):249-55
  • Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 2003;100(22):12978-83
  • Strecker T, Eichler R, Meulen J, Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol 2003;77(19):10700-5
  • Capul AA, Perez M, Burke E, Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 2007;81(17):9451-60
  • Perez M, Greenwald DL, de la Torre JC. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 2004;78(20):11443-8
  • Strecker T, Maisa A, Daffis S, The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 2006;3:93
  • Salvato MS. Molecular biology of the prototype arenavirus, lymphocytic choriomeningitis virus. In: Salvato MS, editor. The Arenaviridae. Plenum Press, New York; 1993. p. 133-56
  • Salvato MS, Schweighofer KJ, Burns J, Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 1992;22(3):185-98
  • Urata S, Noda T, Kawaoka Y, Cellular factors required for Lassa virus budding. J Virol 2006;80(8):4191-5
  • Borden KL, Campbell Dwyer EJ, An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 1998;72(1):758-66
  • Borden KL, Campbelldwyer EJ, Carlile GW, Two RING finger proteins, the oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins. J Virol 1998;72(5):3819-26
  • Campbell Dwyer EJ, Lai H, MacDonald RC, The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol 2000;74(7):3293-300
  • Djavani M, Topisirovic I, Zapata JC, The proline-rich homeodomain (PRH/HEX) protein is down-regulated in liver during infection with lymphocytic choriomeningitis virus. J Virol 2005;79(4):2461-73
  • Kentsis A, Dwyer EC, Perez JM, The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J Mol Biol 2001;312(4):609-23
  • Martinez-Sobrido L, Giannakas P, Cubitt B, Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 2007;81(22):12696-703
  • Martinez-Sobrido L, Zuniga EI, Rosario D, Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2006;80(18):9192-9
  • Martinez-Sobrido L, Emonet S, Giannakas P, Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2009;83(21):11330-40
  • Fan L, Briese T, Lipkin WI. Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction. J Virol 2010;84(4):1785-91
  • Eddy GA, Scott SK, Wagner FS, Pathogenesis of Machupo virus infection in primates. Bull World Health Organ 1975;52(4-6):517-21
  • Terrell TG, Stookey JL, Eddy GA, Pathology of Bolivian hemorrhagic fever in the rhesus monkey. Am J Pathol 1973;73(2):477-94
  • Webb PA, Justines G, Johnson KM. Infection of wild and laboratory animals with Machupo and Latino viruses. Bull World Health Organ 1975;52(4-6):493-9
  • Stinebaugh BJ, Schloeder FX, Johnson KM, Bolivian hemorrhagic fever. A report of four cases. Am J Med 1966;40(2):217-30
  • Terrell TG, Stookey JL, Spertzel RO, Comparative histopathology of two strains of Bolivian hemorrhagic fever virus infections in suckling hamsters. Am J Trop Med Hyg 1973;22(6):814-18
  • Bradfute SB, Stuthman KS, Shurtleff AC, A STAT-1 knockout mouse model for Machupo virus pathogenesis. Virol J 2011;8:300
  • Charrel RN, Coutard B, Baronti C, Arenaviruses and hantaviruses: from epidemiology and genomics to antivirals. Antiviral Res 2011;90(2):102-14
  • Barrera Oro JG, McKee KT Jr. Toward a vaccine against Argentine hemorrhagic fever. Bull Pan Am Hlth Organ 1991;25(2):118-26
  • Enria DA, Maiztegui JI. Antiviral treatment of Argentine hemorrhagic fever. Antiviral Res 1994;23(1):23-31
  • Maiztegui J, Feinsod F, Briggiler A, Inoculation of the 1st Argentinean volunteers with attenuated candid-1 strain Junin virus. Medicina 1987;47(6):565
  • Maiztegui JI, McKee KT Jr, Barrera Oro JG, Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group. J Infect Dis 1998;177(2):277-83
  • Goni SE, Iserte JA, Ambrosio AM, Genomic features of attenuated Junin virus vaccine strain candidate. Virus Genes 2006;32(1):37-41
  • Albarino CG, Bird BH, Chakrabarti AK, The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol 2011;85(19):10404-8
  • Enria DA, Ambrosio AM, Briggiler AM, Candid#1 vaccine against Argentine hemorrhagic fever produced in Argentina. Immunogenicity and safety. Medicina 2010;70(3):215-22
  • Barrera-Oro JG, Lupton HW. Cross-protection against Machupo virus with Candid # 1 live-attenuated Junin virus vaccine. I. The postvaccination prechallenge immune response. Second International Conference on the Impact of Viral Diseases on the Development of Latin American Countries and the Caribbean Region; Buenos Aires, Argentina; 1988
  • Eddy GA, Wagner FS, Scott SK, Protection of monkeys against Machupo virus by the passive administration of Bolivian haemorrhagic fever immunoglobulin (human origin). Bull World Health Organ 1975;52(4-6):723-7
  • Enria DA, Briggiler AM, Fernandez NJ, Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma. Lancet 1984;2(8397):255-6
  • Enria DA, de Damilano AJ, Briggiler AM, Late neurologic syndrome in patients with Argentinian hemorrhagic fever treated with immune plasma. Medicina 1985;45(6):615-20
  • Maiztegui JI, Fernandez NJ, de Damilano AJ. Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet 1979;2(8154):1216-17
  • Garcia CC, Sepulveda CS, Damonte EB. Novel therapeutic targets for arenavirus hemorrhagic fevers. Future Virol 2011;6(1):27-44
  • Barry M, Russi M, Armstrong L, Brief report: treatment of a laboratory-acquired Sabia virus infection. N Engl J Med 1995;333(5):294-6
  • Huggins JW. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev Infect Dis 1989;11(Suppl 4):S750-61
  • Kenyon RH, Canonico PG, Green DE, Effect of ribavirin and tributylribavirin on argentine hemorrhagic fever (Junin virus) in guinea pigs. Antimicrob Agents Chemother 1986;29(3):521-3
  • Khan SH, Goba A, Chu M, New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Res 2008;78(1):103-15
  • Kilgore PE, Ksiazek TG, Rollin PE, Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin Infect Dis 1997;24(4):718-22
  • McCormick JB, King IJ, Webb PA, Lassa fever. Effective therapy with ribavirin. N Engl J Med 1986;314(1):20-6
  • McKee KT Jr, Huggins JW, Trahan CJ, Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. Antimicrob Agents Chemother 1988;32(9):1304-9
  • Petkevich AS, Sabynin VM, Lukashevich IS, Effect of ribovirin (virazole) on arenavirus reproduction in cell cultures. Vopr Virusol 1981;(2):244-5
  • Rodriguez M, McCormick JB, Weissenbacher MC. Antiviral effect of ribavirin on Junin virus replication in vitro. Rev Argent Microbiol 1986;18(2):69-74
  • Snell NJ. Ribavirin – current status of a broad spectrum antiviral agent. Expert Opin Pharmacother 2001;2(8):1317-24
  • Weissenbacher MC, Calello MA, Merani MS, Therapeutic effect of the antiviral agent ribavirin in Junin virus infection of primates. J Med Virol 1986;20(3):261-7
  • Enria DA, Briggiler AM, Levis S, Tolerance and antiviral effect of ribavirin in patients with Argentine hemorrhagic fever. Antiviral Res 1987;7(6):353-9
  • Moreno H, Gallego I, Sevilla N, Ribavirin can be mutagenic for arenaviruses. J Virol 2011;85(14):7246-55
  • Olschlager S, Neyts J, Gunther S. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Res 2011;91(2):89-93
  • Towner JS, Paragas J, Dover JE, Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 2005;332(1):20-7
  • Flatz L, Bergthaler A, de la Torre JC, Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci USA 2006;103(12):4663-8
  • Sanchez AB, de la Torre JC. Rescue of the prototypic Arenavirus LCMV entirely from plasmid. Virology 2006;350(2):370-80
  • Albarino CG, Bergeron E, Erickson BR, Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol 2009;83(11):5606-14
  • Emonet SF, Seregin AV, Yun NE, Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J Virol 2011;85(4):1473-83
  • Albarino CG, Bird BH, Chakrabarti AK, Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. J Virol 2011;85(8):4020-4
  • Lan S, McLay Schelde L, Wang J, Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J Virol 2009;83(13):6357-62
  • Popkin DL, Teijaro JR, Lee AM, Expanded potential for recombinant trisegmented lymphocytic choriomeningitis viruses: protein production, antibody production, and in vivo assessment of biological function of genes of interest. J Virol 2011;85(15):7928-32
  • Suomalainen M, Garoff H. Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus. J Virol 1994;68(8):4879-89
  • Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 1998;72(4):3155-60
  • Burns JC, Friedmann T, Driever W, Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993;90(17):8033-7
  • Reignier T, Oldenburg J, Noble B, Receptor use by pathogenic arenaviruses. Virology 2006;353(1):111-20
  • Rojek JM, Spiropoulou CF, Kunz S. Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology 2006;349(2):476-91
  • Emonet SE, Urata S, de la Torre JC. Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 2011;411(2):416-25
  • Kranzusch PJ, Schenk AD, Rahmeh AA, Assembly of a functional Machupo virus polymerase complex. Proc Natl Acad Sci USA 2010;107(46):20069-74
  • Albarino CG, Bird BH, Chakrabarti AK, Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains. J Virol 2011;85(1):112-22
  • Lee KJ, Novella IS, Teng MN, NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 2000;74(8):3470-7
  • Capul AA, de la Torre JC. A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding. Virology 2008;382(1):107-14
  • Bolken TC, Laquerre S, Zhang Y, Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res 2006;69(2):86-97
  • Larson RA, Dai D, Hosack VT, Identification of a broad-spectrum arenavirus entry inhibitor. J Virol 2008;82(21):10768-75
  • York J, Dai D, Amberg SM, pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J Virol 2008;82(21):10932-9
  • Kiso M, Takahashi K, Sakai-Tagawa Y, T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci USA 2010;107(2):882-7
  • Julander JG, Shafer K, Smee DF, Activity of T-705 in a hamster model of yellow fever virus infection in comparison with that of a chemically related compound, T-1106. Antimicrob Agents Chemother 2009;53(1):202-9
  • Morrey JD, Taro BS, Siddharthan V, Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antiviral Res 2008;80(3):377-9
  • Gowen BB, Smee DF, Wong MH, Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS One 2008;3(11):e3725
  • Gowen BB, Wong MH, Jung KH, In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob Agents Chemother 2007;51(9):3168-76
  • Gowen BB, Wong MH, Jung KH, Efficacy of favipiravir (T-705) and T-1106 pyrazine derivatives in phlebovirus disease models. Antiviral Res 2010;86(2):121-7
  • Mendenhall M, Russell A, Juelich T, T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 2011;55(2):782-7
  • Watterson SH, Chen P, Zhao Y, Acridone-based inhibitors of inosine 5′-monophosphate dehydrogenase: discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2- fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419). J Med Chem 2007;50(15):3730-42
  • Sepulveda CS, Fascio ML, Mazzucco MB, Synthesis and evaluation of N-substituted acridones as antiviral agents against haemorrhagic fever viruses. Antivir Chem Chemother 2008;19(1):41-7
  • Sepulveda CS, Garcia CC, Fascio ML, Inhibition of Junin virus RNA synthesis by an antiviral acridone derivative. Antiviral Res 2012;93(1):16-22
  • Garcia CC, Candurra NA, Damonte EB. Antiviral and virucidal activities against arenaviruses of zinc-finger active compounds. Antivir Chem Chemother 2000;11(3):231-7
  • Garcia CC, Candurra NA, Damonte EB. Mode of inactivation of arenaviruses by disulfide-based compounds. Antiviral Res 2002;55(3):437-46
  • Garcia CC, Ellenberg PC, Artuso MC, Characterization of Junin virus particles inactivated by a zinc finger-reactive compound. Virus Res 2009;143(1):106-13
  • Garcia CC, Djavani M, Topisirovic I, Arenavirus Z protein as an antiviral target: virus inactivation and protein ollgomerization by zinc finger-reactive compounds. J Gen Virol 2006;87:1217-28
  • Garcia CC, Topisirovic I, Djavani M, An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochem Biophys Res Commun 2010;393(4):625-30
  • Sepulveda CS, Garcia CC, Damonte EB. Inhibition of arenavirus infection by thiuram and aromatic disulfides. Antiviral Res 2010;87(3):329-37
  • Garcia CC, Candurra NA, Damonte EB. Differential inhibitory action of two azoic compounds against arenaviruses. Int J Antimicrob Agents 2003;21(4):319-24
  • Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 2004;23(4):382-9
  • Barradas JS, Errea MI, D'Accorso NB, Synthesis and antiviral activity of azoles obtained from carbohydrates. Carbohydr Res 2008;343(14):2468-74
  • Barradas JS, Errea MI, D'Accorso NB, Imidazo[2,1-b]thiazole carbohydrate derivatives: synthesis and antiviral activity against Junin virus, agent of Argentine hemorrhagic fever. Eur J Med Chem 2011;46(1):259-64
  • Karlas A, Machuy N, Shin Y, Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 2010;463(7282):818-22
  • Zhou H, Xu M, Huang Q, Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008;4(5):495-504
  • Li Q, Brass AL, Ng A, A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci USA 2009;106(38):16410-15
  • Kolokoltsova OA, Yun NE, Poussard AL, Mice lacking alpha/beta and gamma interferon receptors are susceptible to junin virus infection. J Virol 2010;84(24):13063-7
  • Lee AM, Pasquato A, Kunz S. Novel approaches in anti-arenaviral drug development. Virology 2011;411(2):163-9
  • Flanagan ML, Oldenburg J, Reignier T, New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol 2008;82(2):938-48
  • Abraham J, Corbett KD, Farzan M, Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol 2010;17(4):438-44
  • Radoshitzky SR, Longobardi LE, Kuhn JH, Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry. PLoS One 2011;6(7):e21398
  • Andrews NC, Fleming MD, Levy JE. Molecular insights into mechanisms of iron transport. Curr Opin Hematol 1999;6(2):61-4
  • Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 2004;117(3):285-97
  • Cheng Y, Zak O, Aisen P, Structure of the human transferrin receptor-transferrin complex. Cell 2004;116(4):565-76
  • Daniels TR, Delgado T, Rodriguez JA, The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 2006;121(2):144-58
  • Abraham J, Corbett KD, Farzan M, Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol 2010;17(4):438-44
  • Peters CJ, Jahrling PB, Liu CT, Experimental studies of arenaviral hemorrhagic fevers. Curr Top Microbiol Immunol 1987;134:5-68
  • Fleming RE, Britton RS. Iron Imports. VI. HFE and regulation of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 2006;290(4):G590-4
  • Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann NY Acad Sci 2004;1012:1-13
  • Wang Y, Hamasaki K, Rando RR. Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region. Biochemistry 1997;36(4):768-79
  • Wang S, Huber PW, Cui M, Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. Biochemistry 1998;37(16):5549-57
  • Morin B, Coutard B, Lelke M, The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 2010;6(9):e1001038
  • Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 2010;6(9):e1001101
  • Qi X, Lan S, Wang W, Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 2010;468(7325):779-83
  • Brunotte L, Kerber R, Shang W, Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy. J Biol Chem 2011;286(44):38748-56
  • Hastie KM, Liu T, Li S, Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci USA 2011;108(48):19365-70
  • Hastie KM, Kimberlin CR, Zandonatti MA, Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci USA 2011;108(6):2396-401

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.