312
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Therapeutics for filovirus infection: traditional approaches and progress towards in silico drug design

, , &
Pages 935-954 | Published online: 08 Aug 2012

Bibliography

  • De Clercq E. The design of drugs for HIV and HCV. Nat Rev Drug Discov 2007;6:1001-18
  • Kubinyi H. Structure-based design of enzyme inhibitors and receptor ligands. Curr Opin Drug Discov Devel 1998;1:4-15
  • Kubinyi H. Chance favors the prepared mind–from serendipity to rational drug design. J Recept Signal Transduct Res 1999;19:15-39
  • Lu YH, Gao XQ, Wu M, Strategies on the development of small molecule anticancer drugs for targeted therapy. Mini Rev Med Chem 2011;11:611-24
  • Hochhaus A, Reiter A, Ernst T, La Rosee P. Imatinib and beyond–targeting activated tyrosine kinases in myeloproliferative disorders. Onkologie 2012;35(Suppl 1):34-41
  • Muller BA. Imatinib and its successors–how modern chemistry has changed drug development. Curr Pharm Des 2009;15:120-33
  • von Itzstein M, Wu WY, Kok GB, Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993;363:418-23
  • von Itzstein M, Dyason JC, Oliver SW, A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J Med Chem 1996;39:388-91
  • Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998;27:249-84
  • Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. Adv Pharmacol 2007;55:261-98
  • Harty RN. No exit: targeting the budding process to inhibit filovirus replication. Antiviral Res 2009;81:189-97
  • Liu Y, Lee MS, Olson MA, Harty RN. Bimolecular complementation to visualize filovirus VP40-host complexes in live mammalian cells: toward the identification of budding inhibitors. Adv Virol 2011;2011: Article ID 341816. p. 10
  • Kolokoltsov AA, Saeed MF, Freiberg AN, Identification of novel cellular targets for therapeutic intervention against Ebola virus infection by siRNA screening. Drug Dev Res 2009;70:255-65
  • Kolokoltsov AA, Adhikary S, Garver J, Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin. Arch Virol 2012;157:121-7
  • Basu A, Li B, Mills DM, Identification of a small-molecule entry inhibitor for filoviruses. J Virol 2011;85:3106-19
  • Liu Y, Stone S, Harty RN. Characterization of filovirus protein-protein interactions in mammalian cells using bimolecular complementation. J Infect Dis 2011;204(Suppl 3):S817-24
  • Cote M, Misasi J, Ren T, Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 2011;477:344-8
  • Warren TK, Shurtleff AC, Bavari S. Advanced morpholino oligomers: A novel approach to antiviral therapy. Antiviral Res 2012;94(1):80-8
  • Kuhn JH. In: Calisher CH, editors. Molecular Characteristics of Filoviruses: a compendium of 40 years of epidemiological, clinical, and laboratory studies. SpringWien New York; Vienna: 2008
  • CDC. Biosafety in Microbiological and Biomedical Laboratories. 5th edition U. S. Department of Health and Human Services; Washington, D.C: 2009
  • Kuhn JH, Radoshitzky SR, Guth AC, Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006;281:15951-8
  • Leroy EM, Gonzalez JP, Baize S. Ebola and Marburg haemorrhagic fever viruses: major scientific advances, but a relatively minor public health threat for Africa. Clin Microbiol Infect 2011;17:964-76
  • CDC. Outbreak Notice. Ebola Outbreak in the District of Bundibugyo; Uganda: 2008
  • CDC. Outbreak of Marburg virus hemorrhagic fever–Angola, October 1, 2004-March 29, 2005. MMWR Morb Mortal Wkly Rep 2005;54:308-9
  • Feldmann H, Jones SM, Schnittler HJ, Geisbert T. Therapy and prophylaxis of Ebola virus infections. Curr Opin Investig Drugs 2005;6:823-30
  • Bazhutin NB, Belanov EF, Spiridonov VA, The effect of the methods for producing an experimental Marburg virus infection on the characteristics of the course of the disease in green monkeys. Vopr Virusol 1992;37:153-6
  • Leffel EK, Reed DS. Marburg and Ebola viruses as aerosol threats. Biosecur Bioterror 2004;2:186-91
  • Bente D, Gren J, Strong JE, Feldmann H. Disease modeling for Ebola and Marburg viruses. Dis Model Mech 2009;2:12-17
  • Ebola haemorrhagic fever in Zaire, 1976. Bull World Health Organ 1978;56:271-93
  • Ebola haemorrhagic fever in Sudan, 1976. Report of a WHO/International Study Team. Bull World Health Organ 1978;56:247-70
  • Bwaka MA, Bonnet MJ, Calain P, Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: clinical observations in 103 patients. J Infect Dis 1999;179(Suppl 1):S1-7
  • Formenty P, Hatz C, Le Guenno B, Human infection due to Ebola virus, subtype Cote d'Ivoire: clinical and biologic presentation. J Infect Dis 1999;179(Suppl 1):S48-53
  • Outbreak of Ebola hemorrhagic fever Uganda, August 2000-January 2001. MMWR Morb Mortal Wkly Rep 2001;50:73-7
  • Shurtleff AC, Warren T, Bavari S. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin Drug Discov 2011;6:1-18
  • Warfield KL, Aman MJ. Advances in virus-like particle vaccines for filoviruses. J Infect Dis 2011;204(Suppl 3):S1053-9
  • Bray M, Davis K, Geisbert T, A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 1999;179(Suppl 1):S248-58
  • Connolly BM, Steele KE, Davis KJ, Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis 1999;179(Suppl 1):S203-17
  • Warfield KL, Bradfute SB, Wells J, Development and characterization of a mouse model for Marburg hemorrhagic fever. J Virol 2009;83:6404-15
  • Lofts LL, Ibrahim MS, Negley DL, Genomic differences between guinea pig lethal and nonlethal Marburg virus variants. J Infect Dis 2007;196(Suppl 2):S305-12
  • Enterlein S, Warfield KL, Swenson DL, VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother 2006;50:984-93
  • Aman MJ, Kinch MS, Warfield K, Development of a broad-spectrum antiviral with activity against Ebola virus. Antiviral Res 2009;83:245-51
  • Warren TK, Warfield KL, Wells J, Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med 2010;16:991-4
  • Geisbert TW, Lee AC, Robbins M, Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 2010;375:1896-905
  • Snoy PJ. Establishing efficacy of human products using animals: the US food and drug administration's “animal rule”. Vet Pathol 2010;47:774-8
  • Draft Guidance for Industry. Essential elements for address efficacy under the animal rule. In: US Depart of Health and Human Services FDA. Volumne 74 Fed Regist; 2009. p. 3610-11
  • Fisher-Hoch SP, Platt GS, Lloyd G, Haematological and biochemical monitoring of Ebola infection in rhesus monkeys: implications for patient management. Lancet 1983;2:1055-8
  • Gonchar NI, Pshenichnov VA, Pokhodiaev VA, The sensitivity of different experimental animals to the Marburg virus. Vopr Virusol 1991;36:435-7
  • Ryabchikova EI, Kolesnikova LV, Luchko SV. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 1999;179(Suppl 1):S199-202
  • Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. University of Chicago, Chicago, IL, USA. J Infect Dis 2011;204(Suppl 3):S810-16
  • Alves DA, Glynn AR, Steele KE, Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic Fever in cynomolgus macaques. Vet Pathol 2010;47:831-51
  • Baskerville A, Bowen ET, Platt GS, The pathology of experimental Ebola virus infection in monkeys. J Pathol 1978;125:131-8
  • Bowen ET, Platt GS, Simpson DI, Ebola haemorrhagic fever: experimental infection of monkeys. Trans R Soc Trop Med Hyg 1978;72:188-91
  • Geisbert TW, Hensley LE, Larsen T, Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003;163:2347-70
  • Geisbert TW, Daddario-DiCaprio KM, Geisbert JB, Marburg virus Angola infection of rhesus macaques: pathogenesis and treatment with recombinant nematode anticoagulant protein c2. J Infect Dis 2007;196(Suppl 2):S372-81
  • Hensley LE, Alves DA, Geisbert JB, Pathogenesis of marburg hemorrhagic Fever in cynomolgus macaques. J Infect Dis2011;204(Suppl 3):S1021-31
  • Reed DS, Hensley LE, Geisbert JB, Depletion of peripheral blood T lymphocytes and NK cells during the course of ebola hemorrhagic Fever in cynomolgus macaques. Viral Immunol 2004;17:390-400
  • Johnson E, Jaax N, White J, Jahrling P. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. Int J Exp Pathol 1995;76:227-36
  • Warren TK, Warfield KL, Wells J, Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother 2010;54:2152-9
  • Basu A, Mills DM, Bowlin TL. High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr Protoc Pharmacol 2011; Chapter 13:Unit 13B 3
  • Takada A, Robison C, Goto H, A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 1997;94:14764-9
  • Ito H, Watanabe S, Takada A, Kawaoka Y. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 2001;75:1576-80
  • Yermolina MV, Wang J, Caffrey M, discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J Med Chem 2011;54:765-81
  • Panchal RG, Kota KP, Spurgers KB, Development of high-content imaging assays for lethal viral pathogens. J Biomol Screen 2010;15:755-65
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Elliott LH, Kiley MP, McCormick JB. Descriptive analysis of Ebola virus proteins. Virology 1985;147:169-76
  • Elliott LH, Sanchez A, Holloway BP, Ebola protein analyses for the determination of genetic organization. Arch Virol 1993;133:423-36
  • Sanchez A, Trappier SG, Mahy BW, The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 1996;93:3602-7
  • Huang Y, Xu L, Sun Y, Nabel GJ. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 2002;10:307-16
  • Leung DW, Prins KC, Basler CF, Amarasinghe GK. Ebolavirus VP35 is a multifunctional virulence factor. Virulence 2010;1:526-31
  • Kiley MP, Wilusz J, McCormick JB, Keene JD. Conservation of the 3' terminal nucleotide sequences of Ebola and Marburg virus. Virology 1986;149:251-4
  • Barr J, Chambers P, Pringle CR, Easton AJ. Sequence of the major nucleocapsid protein gene of pneumonia virus of mice: sequence comparisons suggest structural homology between nucleocapsid proteins of pneumoviruses, paramyxoviruses, rhabdoviruses and filoviruses. J Gen Virol 1991;72(Pt 3):677-85
  • Becker S, Huppertz S, Klenk HD, Feldmann H. The nucleoprotein of Marburg virus is phosphorylated. J Gen Virol 1994;75(Pt 4):809-18
  • Becker S, Rinne C, Hofsass U, Interactions of Marburg virus nucleocapsid proteins. Virology 1998;249:406-17
  • Watanabe S, Noda T, Kawaoka Y. Functional mapping of the nucleoprotein of Ebola virus. J Virol 2006;80:3743-51
  • Licata JM, Johnson RF, Han Z, Harty RN. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 2004;78:7344-51
  • Bharat TA, Noda T, Riches JD, Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc Natl Acad Sci USA 2012;109(11):4275-80
  • Bharat TA, Riches JD, Kolesnikova L, Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol 2011;9:e1001196
  • Hartlieb B, Muziol T, Weissenhorn W, Becker S. Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proc Natl Acad Sci USA 2007;104:624-9
  • Modrof J, Muhlberger E, Klenk HD, Becker S. Phosphorylation of VP30 impairs ebola virus transcription. J Biol Chem 2002;277:33099-104
  • Hartlieb B, Becker S. Characterization of Ebola virus VP30 oligomerization. Abstracts of the Annual Meeting of the ‘‘Gesellschaft f€ur Virologie [German Society of Virology]’’- Joint Meeting with the ‘‘Societa´ Italiana di Virologia [Italian Society of Virology]’’; Eberhard-Karls-Universit€at, T€ubingen, Baden-W€urttemberg, Germany; 2004
  • Modrof J, Becker S, Muhlberger E. Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 2003;77:3334-8
  • John SP, Steffen S, Schmaljohn C, Jonsson CB. In vitro expression, purification and functional analysis of ebola virus VP30, VP35 and L proteins [abstract P25-1]. American Society for Virology 23rd Annual Meeting; McGill University, Montreal, Quebec, Canada; 2004
  • John SP, Wang T, Steffen S, Ebola virus VP30 is an RNA binding protein. J Virol 2007;81:8967-76
  • Basler CF, Wang X, Muhlberger E, The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci USA 2000;97:12289-94
  • Muhlberger E, Lotfering B, Klenk HD, Becker S. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 1998;72:8756-64
  • Noda T, Aoyama K, Sagara H, Nucleocapsid-like structures of Ebola virus reconstructed using electron tomography. J Vet Med Sci 2005;67:325-8
  • Muhlberger E, Weik M, Volchkov VE, Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 1999;73:2333-42
  • Haasnoot J, de Vries W, Geutjes EJ, The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007;3:e86
  • Cardenas WB, Loo YM, Gale M Jr, Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 2006;80:5168-78
  • Feng Z, Cerveny M, Yan Z, He B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol 2007;81:182-92
  • Hartman AL, Dover JE, Towner JS, Nichol ST. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 2006;80:6430-40
  • Leung DW, Ginder ND, Fulton DB, Structure of the Ebola VP35 interferon inhibitory domain. Proc Natl Acad Sci USA 2009;106:411-16
  • Leung DW, Ginder ND, Nix JC, Expression, purification, crystallization and preliminary X-ray studies of the Ebola VP35 interferon inhibitory domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009;65:163-5
  • Boehmann Y, Enterlein S, Randolf A, Muhlberger E. A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology 2005;332:406-17
  • Cox NJ, McCormick JB, Johnson KM, Kiley MP. Evidence for two subtypes of Ebola virus based on oligonucleotide mapping of RNA. J Infect Dis 1983;147:272-5
  • Towner JS, Khristova ML, Sealy TK, Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 2006;80:6497-516
  • Muller S, Moller P, Bick MJ, Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 2007;81:2391-400
  • Dessen A, Volchkov V, Dolnik O, Crystal structure of the matrix protein VP40 from Ebola virus. EMBO J 2000;19:4228-36
  • Gomis-Ruth FX, Dessen A, Timmins J, The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 2003;11:423-33
  • Ruigrok RW, Schoehn G, Dessen A, Structural characterization and membrane binding properties of the matrix protein VP40 of Ebola virus. J Mol Biol 2000;300:103-12
  • Dessen A, Forest E, Volchkov V, Crystallization and preliminary X-ray analysis of the matrix protein from Ebola virus. Acta Crystallogr D Biol Crystallogr 2000;56:758-60
  • Weissenhorn W. Structure of Viral Proteins. In: Klenk H, Feldmann H, editors. EBOLA and MARBURG VIRUSES - Molecular and Cellular Biology. Horizon Bioscience, Wymondham, Norfolk, United Kingdom; 2004; p. 27-57
  • Bukreyev AA, Volchkov VE, Blinov VM, Netesov SV. The VP35 and VP40 proteins of filoviruses. Homology between Marburg and Ebola viruses. FEBS Lett 1993;322:41-6
  • Kolesnikova L, Bugany H, Klenk HD, Becker S. VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 2002;76:1825-38
  • Jasenosky LD, Neumann G, Lukashevich I, Kawaoka Y. Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 2001;75:5205-14
  • Noda T, Ebihara H, Muramoto Y, Assembly and budding of Ebolavirus. PLoS Pathog 2006;2:e99
  • Garcia M, Cooper A, Shi W, Productive Replication of Ebola Virus Is Regulated by the c-Abl1 Tyrosine Kinase. Sci Transl Med 2012;4:123ra24
  • Ruthel G, Demmin GL, Kallstrom G, Association of ebola virus matrix protein VP40 with microtubules. J Virol 2005;79:4709-19
  • Badie S, Kallstrom G, Lessick B, Abstract: Study of Ebola Virus and VLP Release in NPC1 Cells Deficient in Cholesterol Trafficking. ASM [American Society for Microbiology] Biodefense Research Meeting; Baltimore, Maryland, USA; 2005
  • Harty RN, Brown ME, Wang G, A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci USA 2000;97:13871-6
  • Licata JM, Simpson-Holley M, Wright NT, Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 2003;77:1812-19
  • Urata S, Noda T, Kawaoka Y, Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 2007;81:4895-9
  • Dolnik O, Kolesnikova L, Stevermann L, Becker S. Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles. J Virol 2010;84:7847-56
  • Irie T, Licata JM, Harty RN. Functional characterization of Ebola virus L-domains using VSV recombinants. Virology 2005;336:291-8
  • Bamberg S, Kolesnikova L, Moller P, VP24 of Marburg virus influences formation of infectious particles. J Virol 2005;79:13421-33
  • Noda T, Sagara H, Suzuki E, Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 2002;76:4855-65
  • Bukreyev AA, Belanov EF, Blinov VM, Netesov SV. Complete nucleotide sequences of Marburg virus genes 5 and 6 encoding VP30 and VP24 proteins. Biochem Mol Biol Int 1995;35:605-13
  • Ebihara H, Takada A, Kobasa D, Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2006;2:e73
  • Han Z, Boshra H, Sunyer JO, Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J Virol 2003;77:1793-800
  • Mateo M, Reid SP, Leung LW, Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J Virol 2010;84:1169-75
  • Reid SP, Leung LW, Hartman AL, Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2006;80:5156-67
  • Reid SP, Valmas C, Martinez O, Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 2007;81:13469-77
  • Zhang AP, Bornholdt ZA, Liu T, The Ebola Virus Interferon Antagonist VP24 Directly Binds STAT1 and Has a Novel, Pyramidal Fold. PLoS Pathog 2012;8:e1002550
  • Volchkov VE, Becker S, Volchkova VA, GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 1995;214:421-30
  • Volchkova VA, Feldmann H, Klenk HD, Volchkov VE. The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 1998;250:408-14
  • Mehedi M, Falzarano D, Seebach J, A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 2011;85:5406-14
  • Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 1998;95:5762-7
  • Feldmann H, Nichol ST, Klenk HD, Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein. Virology 1994;199:469-73
  • Saez-Cirion A, Gomara MJ, Agirre A, Nieva JL. Pre-transmembrane sequence of Ebola glycoprotein. Interfacial hydrophobicity distribution and interaction with membranes. FEBS Lett 2003;533:47-53
  • Adam B, Lins L, Stroobant V, Distribution of hydrophobic residues is crucial for the fusogenic properties of the Ebola virus GP2 fusion peptide. J Virol 2004;78:2131-6
  • Ruiz-Arguello MB, Goni FM, Pereira FB, Nieva JL. Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol 1998;72:1775-81
  • Chepurnov AA, Tuzova MN, Ternovoy VA, Chernukhin IV. Suppressive effect of Ebola virus on T cell proliferation in vitro is provided by a 125-kDa GP viral protein. Immunol Lett 1999;68:257-61
  • Dowling W, Thompson E, Badger C, Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of ebola virus GP DNA vaccines. J Virol 2007;81:1821-37
  • Yang ZY, Duckers HJ, Sullivan NJ, Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 2000;6:886-9
  • Chan SY, Ma MC, Goldsmith MA. Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol 2000;81:2155-9
  • Ray RB, Basu A, Steele R, Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology 2004;321:181-8
  • Simmons G, Wool-Lewis RJ, Baribaud F, Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 2002;76:2518-28
  • Volchkov VE, Volchkova VA, Muhlberger E, Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001;291:1965-9
  • Volchkov VE, Blinov VM, Netesov SV. The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett 1992;305:181-4
  • Yaddanapudi K, Palacios G, Towner JS, Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 2006;20:2519-30
  • Ignatyev GM, Volchkov VE, Blinov VM, Phenomenon of immunosuppression caused by filoviruses. Int J Immunorehabilitation 1994;1:Suppl Moscow
  • Schornberg K, Matsuyama S, Kabsch K, Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 2006;80:4174-8
  • Chandran K, Sullivan NJ, Felbor U, Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005;308:1643-5
  • Carette JE, Raaben M, Wong AC, Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 2011;477:340-3
  • Shimojima M, Takada A, Ebihara H, Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 2006;80:10109-16
  • Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 2000;74:4933-7
  • Kaletsky RL, Simmons G, Bates P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol 2007;81:13378-84
  • Simmons G, Reeves JD, Grogan CC, DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003;305:115-23
  • Simmons G, Rennekamp AJ, Chai N, Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 2003;77:13433-8
  • Sanchez A. Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity. J Infect Dis 2007;196(Suppl 2):S251-8
  • Lee JE, Fusco ML, Hessell AJ, Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 2008;454:177-82
  • Cenedella RJ. Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009;44:477-87
  • Rodriguez-Lafrasse C, Rousson R, Bonnet J, Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease. Biochim Biophys Acta 1990;1043:123-8
  • Davies JP, Ioannou YA. Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem 2000;275:24367-74
  • King G, Sharom FJ. Proteins that bind and move lipids: msbA and NPC1. Crit Rev Biochem Mol Biol 2012;47:75-95
  • Kwon HJ, Abi-Mosleh L, Wang ML, Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 2009;137:1213-24
  • Chhabria MT, Mahajan BM. Update on patented cholesterol absorption inhibitors. Expert opin ther patents 2009;19:1083-107
  • Clader JW. The discovery of ezetimibe: a view from outside the receptor. J Med Chem 2004;47:1-9
  • Weinglass AB, Kohler M, Schulte U, Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci USA 2008;105:11140-5
  • Clader JW. Ezetimibe and other azetidinone cholesterol absorption inhibitors. Curr Top Med Chem 2005;5:243-56
  • Howell KL, DeVita RJ, Garcia-Calvo M, Spiroimidazolidinone NPC1L1 inhibitors. Part 2: structure-activity studies and in vivo efficacy. Bioorg Med Chem Lett 2010;20:6929-32
  • McMasters DR, Garcia-Calvo M, Maiorov V, Spiroimidazolidinone NPC1L1 inhibitors. 1: discovery by 3D-similarity-based virtual screening. Bioorg Med Chem Lett 2009;19:2965-8
  • Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 1998;72:3155-60
  • Panchal RG, Reid SP, Tran JP, Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 2011;93:23-9
  • Yasuda J, Nakao M, Kawaoka Y, Shida H. Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol 2003;77:9987-92
  • Han Z, Harty RN. Packaging of actin into Ebola virus VLPs. Virol J 2005;2:92
  • Spurgers KB, Alefantis T, Peyser BD, Identification of essential filovirion-associated host factors by serial proteomic analysis and RNAi screen. Mol Cell Proteomics 2010;9:2690-703
  • Fletcher S, Hamilton AD. Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Curr Opin Chem Biol 2005;9:632-8
  • Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2005;44:4130-63
  • Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol 1999;285:2177-98
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004;3:301-17
  • Clackson T, Wells JA. A hot spot of binding energy in a hormone-receptor interface. Science 1995;267:383-6
  • DeLano WL. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 2002;12:14-20
  • National Institutes of Health OoER. NIH Research Portfolio Online Reporting Tools (RePORT). Estimates of Funding for Various Research, Condition and Disease Categories: U.S. Department of Health and Human Services, 2012
  • Greenstone H, Spinelli B, Tseng C, NIAID resources for developing new therapies for severe viral infections. Antiviral Res 2008;78:51-9
  • Bolken TC, Hruby DE. Discovery and development of antiviral drugs for biodefense: experience of a small biotechnology company. Antiviral Res 2008;77:1-5
  • van der Groen G, Jacob W, Pattyn SR. Ebola virus virulence for newborn mice. J Med Virol 1979;4:239-40
  • Bray M, Davis K, Geisbert T, A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 1998;178:651-61
  • Gibb TR, Bray M, Geisbert TW, Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 2001;125:233-42
  • Bray M. The role of the Type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 2001;82:1365-73
  • Raymond J, Bradfute S, Bray M. Filovirus infection of STAT-1 knockout mice. J Infect Dis 2011;204(Suppl 3):S986-90
  • Shultz LD, Brehm MA, Bavari S, Greiner DL. Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50-4
  • Swenson DL, Warfield KL, Kuehl K, Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol 2004;40:27-31
  • Ryabchikova E, Strelets L, Kolesnikova L, Respiratory Marburg virus infection in guinea pigs. Arch Virol 1996;141:2177-90
  • Simpson DI, Zlotnik I, Rutter DA. Vervet monkey disease. Experiment infection of guinea pigs and monkeys with the causative agent. Br J Exp Pathol 1968;49:458-64
  • Robin Y, Bres P, Camain R. Passage of Marburg virus in guinea pigs. In: Martini GAaS R, editors. Marburg virus. Springer-Verlag; New York, NY: 1971. p. 117-22
  • Carrion R Jr, Ro Y, Hoosien K, A small nonhuman primate model for filovirus-induced disease. Virology 2011;420:117-24
  • Alves DA, Glynn AR, Steele KE, Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic Fever in cynomolgus macaques. Vet Pathol 2010;47:831-51
  • Hensley LE, Alves DA, Geisbert JB, Pathogenesis of marburg hemorrhagic Fever in cynomolgus macaques. J Infect Dis 2011;204(Suppl 3):S1021-31
  • Fisher-Hoch SP, Platt GS, Neild GH, Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola). J Infect Dis 1985;152:887-94
  • Hartlieb B, Modrof J, Muhlberger E, Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J Biol Chem 2003;278:41830-6
  • Hartman AL, Towner JS, Nichol ST. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 2004;328:177-84
  • Valmas C, Grosch MN, Schumann M, Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 2010;6:e1000721
  • Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci USA 2009;106:2886-91
  • Bukreyev A, Volchkov VE, Blinov VM, Netesov SV. The GP-protein of Marburg virus contains the region similar to the ‘immunosuppressive domain' of oncogenic retrovirus P15E proteins. FEBS Lett 1993;323:183-7
  • Lee JE, Fusco ML, Abelson DM, Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein. Acta Crystallogr D Biol Crystallogr 2009;65:1162-80
  • Lee JE, Saphire EO. Neutralizing ebolavirus: structural insights into the envelope glycoprotein and antibodies targeted against it. Curr Opin Struct Biol 2009;19:408-17
  • Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol 2009;4:621-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.