273
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Preclinical models for pediatric solid tumor drug discovery: current trends, challenges and the scopes for improvement

, , &
Pages 1093-1106 | Published online: 24 Sep 2012

Bibliography

  • Ries LAG, Smith MA, Gurney JG, editors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. National Cancer Institute, SEER Program; Bethesda, MD: 1999. NIH Pub. No. 99-4649
  • Pui CH, Gajjar AJ, Kane JR, Challenging issues in pediatric oncology. Nat Rev Clin Oncol 2011;8:540-9
  • Boklan J. Little patients, losing patience: pediatric cancer drug development. Mol Cancer Ther 2006;5:1905-8
  • U.S Department of Health and Human Services. Code of Federal Regulations. 45 CFR 46, subpart D
  • Houghton PJ, Morton CL, Tucker C, The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007;49:928-40
  • Bond M, Bernstein ML, Pappo A, A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer 2008;50:254-8
  • Baruchel S, Sharp JR, Bartels U, A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 2009;45:2352-9
  • Beaty O III, Berg S, Blaney S, A phase II trial and pharmacokinetic study of oxaliplatin in children with refractory solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer 2010;55:440-5
  • Weiss WA, Banerjee A. Can mouse models for brain tumors inform treatment in pediatric patients? Semin Cancer Biol 2004;14:71-7
  • Paugh BS, Qu C, Jones C, Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 2010;28:3061-8
  • Korshunov A, Remke M, Werft W, Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J Clin Oncol 2010;28:3054-60
  • Al-Halabi H, Nantel A, Klekner A, Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma. Acta Neuropathol 2011;121:229-39
  • Northcott PA, Hielscher T, Dubuc A, Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol 2011;122:231-40
  • Kim SY, Janeway K, Pappo A. Pediatric and wild-type gastrointestinal stromal tumor: new therapeutic approaches. Curr Opin Oncol 2010;22:347-50
  • Sultan I, Qaddoumi I, Yaser S, Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol 2009;27:3391-7
  • Faria AM, Almeida MQ. Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults. Mol Cell Endocrinol 2012;351:52-7
  • Turner KE, Kumar HR, Hoelz DJ, Proteomic analysis of neuroblastoma microenvironment: effect of the host-tumor interaction on disease progression. J Surg Res 2009;156:116-22
  • Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003;2(4 Suppl 1):S134-9
  • Teicher BA, editor. Tumor models in cancer res. 2nd edition. Humana Press, Inc., New York, NY; 2011.
  • Engler S, Thiel C, Förster K, A novel metastatic animal model reflecting the clinical appearance of human neuroblastoma: growth arrest of orthotopic tumors by natural, cytotoxic human immunoglobulin M antibodies. Cancer Res 2001;61:2968-73
  • Jia SF, Worth LL, Kleinerman ES. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis 1999;17:501-6
  • Wan X, Mendoza A, Khanna C, Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 2005;65:2406-11
  • Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 2006;66:3355-8; discussion 3358-9
  • Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther 2009;85:217-21
  • Singh M, Johnson L. Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 2006;12:5312-28
  • Green JE, Ried T, editors. Genetically engineered mice in cancer research: design, analysis, pathways, validation and preclinical testing. Springer, New York, NY; 2012.
  • Zhang J, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma. Cell Cycle 2004;3:952-9
  • Brennan RC, Federico S, Bradley C, Targeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a. Cancer Res 2011;1571:4205-13
  • McClatchey AI, Saotome I, Mercer K, Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998;12:1121-33
  • Teitz T, Stanke JJ, Federico S, Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 2011;6:e19133
  • Schönherr C, Ruuth K, Kamaraj S, Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012. [Epub ahead of print]
  • Gangwal K, Sankar S, Hollenhorst PC, Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci USA 2008;105:10149-54
  • Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 2008;1:78-82
  • Whiteford CC, Bilke S, Greer BT, Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 2007;67:32-40
  • Teicher BA, Andrews PA. Anticancer drug development guide: preclinical screening, clinical trials and approvals. 2nd edition. Humana Press, Inc., Totawa, NJ; 2004
  • Moreno L, Chesler L, Hargrave D, Preclinical drug development for childhood cancer. Exp. Opinion Drug Disc 2011;6:49-64
  • Szpirer C. Cancer research in rat models. Methods Mol Biol 2010;597:445-58
  • Blouin S, Baslé MF, Chappard D. Rat models of bone metastases. Clin Exp Metastasis 2005;22:605-14
  • Ruggeri M, Wehbe H, Jiao S, In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007;48:1808-14
  • Schabet M, Martos J, Buchholz R, Animal model of human medulloblastoma: clinical, magnetic resonance imaging, and histopathological findings after intra-cisternal injection of MHH-MED-1 cells into nude rats. Med Pediatr Oncol 1997;29:92-7
  • Martinez DA, Kahwash S, O'Dorisio MS, Disseminated neuroblastoma in the nude rat. A xenograft model of human malignancy. Cancer 1996;77:409-19
  • Nassr M, Wang X, Mitra S, Treating retinoblastoma in tissue culture and in a rat model with a novel isoquinoline derivative. Invest Ophthalmol Vis Sci 2010;51:3813-19
  • Tomoda R, Seto M, Hioki Y, Low-dose methotrexate inhibits lung metastasis and lengthens survival in rat osteosarcoma. Clin Exp Metastasis 2005;22:559-64
  • van Boxtel R, Kuiper RV, Toonen PW, Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am J Pathol 2011;179:1616-22
  • Khanna C, London C, Vail D, Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin Cancer Res 2009;15(18):5671-7
  • Rankin KS, Starkey M, Lunec J, Of dogs and men: comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma. Pediatr Blood Cancer 2012;58:327-33
  • Selting KA, Wang X, Gustafson DL, Evaluation of satraplatin in dogs with spontaneously occurring malignant tumors. J Vet Intern Med 2011;25:909-15
  • Wittenburg LA, Gustafson DL, Thamm DH. Phase I pharmacokinetic and pharmacodynamic evaluation of combined valproic acid/doxorubicin treatment in dogs with spontaneous cancer. Clin Cancer Res 2010;16:4832-42
  • Paoloni MC, Mazcko C, Fox E, Rapamycin pharmacokinetic and pharmacodynamic relationships in osteosarcoma: a comparative oncology study in dogs. PLoS ONE 2010;5:e11013
  • Neale G, Su X, Morton CL, Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 2008;14:4572-83
  • Shankavaram UT, Bredel M, Burgan WE, Molecular profiling indicates orthotopic xenograft of glioma cell lines simulate a subclass of human glioblastoma. J Cell Mol Med 2012;16:545-54
  • Teitz T, Stanke JJ, Federico S, Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 2011;6:e19133
  • Olive KP, Tuveson DA. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 2006;12:5277-87
  • Balis FM, Fox E, Widemann BC, Clinical drug development for childhood cancers. Clin Pharmacol Ther 2009;85:127-9
  • Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659-61
  • Erickson-Miller CL, May RD, Tomaszewski J, Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother Pharmacol 1997;39:467-72
  • Takimoto CH. Why drugs fail: of mice and men revisited. Clin Cancer Res 2001;7:229-30
  • Stewart CF, Leggas M, Schuetz JD, Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004;64:7491-9
  • Furman WL, McGregor LM, McCarville MB, A single-arm pilot phase II study of gefitinib and irinotecan in children with newly diagnosed high-risk neuroblastoma. Invest New Drugs 2011;30(4):1660-70
  • Houghton PJ, Cheshire PJ, Hallman JD II, Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol 1995;36:393-403
  • Furman WL, Stewart CF, Poquette CA, Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 1999;17:1815-24
  • Kumar R, Knick VB, Rudolph SK, Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 2007;6:2012-21
  • Kumar S, Mokhtari RB, Sheikh R, Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Cancer Res 2011;17:5656-67
  • Nemeth KM, Federico S, Carcaboso AM, Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma. Cancer 2011;117:421-34
  • Kretz O, Weiss HM, Schumacher MM, In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol 2004;58:212-16
  • 66. Tanaka C, O'Reilly T, Kovarik JM, Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 2008;26:1596-602
  • Mordenti J, Thomsen K, Licko V, Efficacy and concentration-response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol 1999;27:14-21
  • Wang S, Guo P, Wang X, Preclinical pharmacokinetic/pharmacodynamic models of gefitinib and the design of equivalent dosing regimens in EGFR wild-type and mutant tumor models. Mol Cancer Ther 2008;7:407-17
  • Rossi L, Marchese E, Lombardo MF, Increased susceptibility of copper-deficient neuroblastoma cells to oxidative stress-mediated apoptosis. Free Radic Biol Med 2001;30:1177-87
  • Opel D, Poremba C, Simon T, Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res 2007;67:735-45
  • Bender A, Opel D, Naumann I, PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis. Oncogene 2011;30:494-503
  • del Carmen Mejía M, Navarro S, Pellín A, Study of proliferation and apoptosis in neuroblastoma. Their relation with other prognostic factors. Arch Med Res 2002;33:466-72
  • Naumann I, Kappler R, von Schweinitz D, Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin Cancer Res 2011;17:3204-18
  • Azuhata T, Scott D, Takamizawa S, The inhibitor of apoptosis protein survivin is associated with high-risk behavior of neuroblastoma. J Pediatr Surg 2001;36:1785-91
  • Bodey B, Bodey V, Siegel SE, Survivin expression in childhood medulloblastomas: a possible diagnostic and prognostic marker. In Vivo 2004;18:713-18
  • Zucchini C, Rocchi A, Manara MC, Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol 2008;32:17-31
  • Raimondi L, Ciarapica R, De Salvo M, Inhibition of Notch3 signalling induces rhabdomyosarcoma cell differentiation promoting p38 phosphorylation and p21(Cip1) expression and hampers tumour cell growth in vitro and in vivo. Cell Death Differ 2012;19:871-81
  • Molenaar JJ, Ebus ME, Koster J, Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. Cancer Res 2008;68:2599-609
  • Shapovalov Y, Benavidez D, Zuch D, Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcoma. Int J Cancer 2010;127:67-76
  • Zhang L, Yeger H, Das B, Tissue microenvironment modulates CXCR4 expression and tumor metastasis in neuroblastoma. Neoplasia 2007;9:36-46
  • Russell HV, Hicks J, Okcu MF, CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg 2004;39:1506-11
  • Yoshikawa H, Nakase T, Myoui A, Bone morphogenetic proteins in bone tumors. J Orthop Sci 2004;9:334-40
  • Du Y, Yip H. Effects of bone morphogenetic protein 2 on Id expression and neuroblastoma cell differentiation. Differentiation 2010;79:84-92
  • Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011;11:393-410
  • Das B, Tsuchida R, Malkin D, Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 2008;26:1818-30
  • Pàez-Ribes M, Allen E, Hudock J, Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009;15:220-31
  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med2002;53:615-27
  • Soda Y, Marumoto T, Friedmann-Morvinski D, Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 2011;108:4274-80
  • Pezzolo A, Parodi F, Corrias MV, Tumor origin of endothelial cells in human neuroblastoma. J Clin Oncol 2007;25:376-83
  • Baruchel S. Surrogate biomarkers of antiangiogenesis in Children's Oncology Group (COG) phase I trials [abstract # 9502]. ASCO Annual Meeting; 2011
  • . Bertolini F, Shaked Y, Mancuso P, The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006;6:835-45
  • DuBois SG, Stempak D, Wu B, Circulating endothelial cells and circulating endothelial precursor cells in patients with osteosarcoma. Pediatr Blood Cancer 2012;58:181-4
  • Friedman GK, Gillespie GY. Cancer Stem Cells and Pediatric Solid Tumors. Cancers (Basel) 2011;3:298-318
  • Hadjipanayis CG, Van Meir EG. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med (Berl) 2009;87:363-74
  • Zhou BB, Zhang H, Damelin M, Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009;8:806-23
  • Siclari VA, Qin L. Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res 2010;5:78
  • Tirino V, Desiderio V, d'Aquino R, Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One 2008;3:e3469
  • Adhikari AS, Agarwal N, Wood BM, CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 2010;70:4602-12
  • Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010;10:319-31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.