581
Views
18
CrossRef citations to date
0
Altmetric
Reviews

DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences

, MD PhD
Pages 1039-1051 | Published online: 05 Sep 2012

Bibliography

  • Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001;20:3139-55
  • Razin A, Riggs AD. DNA methylation and gene function. Science 1980;210:604-10
  • Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997;13:335-40
  • Chen TP, Hevi S, Gay F, Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 2007;39:391-6
  • Yokochi T, Robertson KD. Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase dnmt3a. J Biol Chem 2002;277:11735-45
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-57
  • Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 2004;24:9048-58
  • Kaneda M, Okano M, Hata K, Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004;429:900-3
  • Van Emburgh BO, Robertson KD. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 2011;39:4984-5002
  • Schaefer M, Lyko F. Solving the dnmt2 enigma. Chromosoma 2010;119:35-40
  • Chen XD, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure 2008;16:341-50
  • Aapola U, Kawasaki K, Scott HS, Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 2000;65:293-8
  • Yoo J, Medina-Franco JL. Discovery and optimization of inhibitors of DNA methyltransferase as novel drugs for cancer therapy. In: Chris Rundfeld, editor. Drug development – a case study based insight into modern strategies. InTech; 2011. ISBN: 978-953-307-257-9
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128:683-92
  • Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 1993;90:11995-9
  • Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000;16:168-74
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promotor hypermethylation. N Engl J Med 2003;349:2042-54
  • Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol 2010;28:1069-78
  • McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin Oncol InTech, Croatia 2011;39:109-22
  • Arrowsmith CH, Bountra C, Fish PV, Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012;11:384-400
  • Fathi AT, Abdel-Wahab O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2012;2012:469592
  • Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 2009;8:724-32
  • Figueroa ME, Abdel-Wahab O, Lu C, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18:553-67
  • Kaneda A, Matsusaka K, Aburatani H, Fukayama M. Epstein-barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 2012;72:3445-50
  • Ehrlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 2003;109:17-28
  • Moarefi AH, Chedin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 2011;409:758-72
  • Ley TJ, Ding L, Walter MJ, DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363:2424-33
  • Walter MJ, Ding L, Shen D, Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011;25:1153-8
  • Hou HA, Kuo YY, Liu CY, DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 2012;119:559-68
  • Lugthart S, Figueroa ME, Bindels E, Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood 2011;117:234-41
  • Senyuk V, Premanand K, Xu P, The oncoprotein EVI1 and the DNA methyltransferase Dnmt3 co-operate in binding and de novo methylation of target DNA. PLoS ONE 2011;6:e20793
  • Wang J, Walsh G, Liu DD, Expression of Delta DNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer. Cancer Res 2006;66:8361-6
  • Amara K, Ziadi S, Hachana M, DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci 2010;101:1722-30
  • Yoo NJ, Kim MS, Lee SH. Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers. Cancer Res 2012;72(Suppl 1):abstract 2191
  • Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics 2010;2:71-86
  • Ito S, D’Alessio AC, Taranova OV, Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129-33
  • Langemeijer SMC, Kuiper RP, Berends M, Aquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009;41:838-42
  • Guo JU, Su Y, Zhong C, Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011;145:423-34
  • Ko M, Huang Y, Jankowska AM, Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010;468:839-43
  • Gaidzik V, Schlenk RF, Paschka P, TET2 mutations in acute myeloid leukemia (AML): results on 783 patients treated within the AML HD98A study of the AML Study Group (AMLSG). Blood 2010;116(Suppl):abstr 97
  • Abdel-Wahab O, Mullaly A, Hedvat C, Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114:144-7
  • Viré E, Brenner C, Deplus R, The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006;439:871-4
  • Ernst T, Chase AJ, Score J, Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010;42:722-6
  • Nikoloski G, Langemeijer SMC, Kuiper RP, Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010;42:665-7
  • Mai A, Altucci L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 2009;123:8-13
  • Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chem Bio Chem 2011;12:206-22
  • Vilkaitis G, Merkiene E, Serva S, The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase. J Biol Chem 2001;276:20924-34
  • Medina-Franco JL, Caulfield T. Advances in the computational development of DNA methyltransferase inhibitors. Drug Discov Today 2011;16:418-25
  • Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008;123:8-13
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009;10:223-32
  • Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005;97:1498-506
  • Martinet N, Michel BY, Bertrand P, Benhida R. Small molecules DNA methyltransferases inhibitors. Med Chem Commun 2012;3:263-73
  • Foulks JM, Parnell KM, Nix RN, Epigenetic drug discovery: targeting DNA methyltransferases. J Biomol Screen 2012;17:2-17
  • Pliml J, Sorm F. Synthesis of 2’-deoxy-D-ribofuranosyl-5-azacytosine. Coll Czech Chem Commun 1964;29:2576-7
  • Sorm F, Vasely J. Effect of 5-aza-2’-deoxycytidine against leukemic and hematopoietic issues in AKR mice. Neoplasm 1968;15:339-43
  • Davies MJ, Jenkins PR, Prouse LSJ, Structure of 2’-deoxy-5-azacytidine (decitabine) monohydrate. Acta Crystllogr 1991;C47:1418-20
  • Taylor SM. 5-aza-2’-deoxycytidine-cell differentiation and DNA methylation. Leukemia 1993;7(Suppl 1):3-8
  • Momparler RL, Bouchard J, Onetto N, Rivard GE. 5-aza-2’-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leuk Res 1984;8:181-5
  • de Vos D, van Overveld W. Decitabine: a historical reviewof the development of an epigenetic drug. Ann Hematol 2005;84:3-8
  • Willemze R, Stegman APA, Colly LP. The use of 5-aza-2’-deoxycytidine (DAC) in adult patients with acute leukaemia. Haematologica 1990;76:abstr 43
  • Pinto A. 5-aza-2’-deoxycytidine and DNA methyltransferase inhibitors in the treatment of myeloid leukemias and myelodysplastic syndromes: biological aspects and clinical results. A peer-reviewed monograph based and extended after the Workshop; presented at the 5th International Symposium on Therapy of Acute Leukemias; 3 November 1991; Macmillan, Rome, Italy; 1993
  • Kantarjian HM, Pinto A, Muller-Bérat Killmann N. Workshop on the clinical results with decitabine (5-aza-2’-deoxycytidine) in hematologic malignancies: Peer-reviewed Proceedings; 30 May 1996; Stockton, Paris, France, 1997
  • Momparler RL, de Vos D. 5-aza-2’-deoxycytidine. Preclinical and clinical studies. PCH Publications; Haarlem, The Netherlands: 1990
  • Wijermans P, Lübbert M, Verhoef G, Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956-62
  • Issa JP, Garcia-Manero G, Giles FJ, Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103:1635-40
  • Ravandi F, Kantarjian H, Cohen A, Decitabine with allogeneic peripheral blood stem cell transplantation in the therapy of leukaemia relapse following a prior transplant: results of a phase I study. Bone Marrow Transplant 2001;27:1221-5
  • Sorm F, Piskala A, Cihak A, Vasely J. 5-azacytidine, a new highly effective cancerostatic. Experientia 1964;20:202-3
  • Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20:85-93
  • Glover AB, Leyland-Jones B. Biochemistry of azacitidine: a review. Cancer Treat Rep 1987;71:959-64
  • Murakami T, Li X, Gong J, Induction of apoptosis by 5-azacytidine: drug concentration-dependent differences in cell cycle specificity. Cancer Res 1995;55:3093-8
  • Christman JK, Mendelsohn N, Herzog D, Schneiderman N. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res 1983;43:763-9
  • Zhou L, Cheng X, Connolly BA, Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 2002;321:591-9
  • Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 2004;32(part 6):910-12
  • Cheng JC, Matsen CB, Gonzales FA, Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003;95:399-409
  • Pompeia C, Hodge DR, Plass C, Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line. Cancer Res 2004;64:3465-73
  • Beumer JH, Eiseman JL, Parise RA, Pharmacokinetics, metabolism, and oral bioavailability of the DNA methyltransferase inhibitor 5-fluoro-2’-deoxycytidine in mice. Clin cancer Res 2006;12:7483-91
  • Fang MZ, Wang YM, Ai N Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003;63:7563-70
  • Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005;68:1018-30
  • Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffe polyphenols. Carcinogenesis 2006;27:269-77
  • Parker BS, Cutts SM, Nudelman A, Mitoxantrone mediates demethylation and re-expression of cyclin D2, estrogen receptor and 14.3.3 sigma in breast cancer cells. Cancer Biol Ther 2003;2:259-63
  • Lin RK, Hsu CH, Wang YC. Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 2007;18:1157-64
  • Kuck D, Caulfield T, Lyko F, Medina-Franco JL. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther 2010;9:3015-23
  • Gilbert ER, Liu D. Flavonoids influence epigenetic-modifying enzyme activity: structure-function relationships and the therapeutic potential for cancer. Curr Med Chem 2010;17:1756-68
  • Crooke ST. Potential roles of antisense technology in cancer chemotherapy. Oncogene 2000;19:6651-9
  • Ramchandani S, MacLeod AR, Pinard M, Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleoside. Proc Natl Acad Sci USA 1997;94:684-9
  • MacLeod AR, Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem 1995;270:8037-43
  • Kuck D, Singh N, Lyko F, Medina-Franco JL. Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 2010;18:822-9
  • Eglen RM, Reisine T. Screening for compounds that modulate epigenetic regulation of the transcriptome: an overview. J Biomol Screen 2011;16:1137-52
  • Shoichet BK. Virtual screening of chemical libraries. Nature 2004;432:862-5
  • Villoutreix BO, Eudes R, Miteva MA. Structure-based virtual ligand screening: recent success stories. Comb Chem High Throughput Screen 2009;12:1000-16
  • Sperandio O, Miteva MA, Villoutreix BO. Combining ligand- and structure-based methods in drug design projects. Curr Comput Aided Drug Des 2008;4:250-8
  • Goffin J, Eisenhauer E. DNA methyltransferase inhibitors – state of the art. Ann Oncol 2002;13:1699-716
  • Yoo J, Medina-Franco JL. Homology modelling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase. J Comput Aided Mol Des 2011;25:555-67
  • Ramsahoye BH. Measurement of genome wide DNA methylation by reversed-phase high-performance liquid chromatography. Methods 2002;27:156-61
  • Stach D, Schmitz OJ, Stilgenbauer S, Capillary electrophoretic analysis of genomic DANN methylation levels. Nucleic Acids Res 2003;31:e2
  • Adorjan P, Distler J, Lipscher E, Tumour class prediction and discovery by microarray-based DANN methylation analysis. Nucleic Acids Res 2002;30:e21
  • Menzin J, Lang K, Earle CC, The outcomes and costs of acute myeloid leukemia among the elderly. Arch Intern Med 2002;162:1597-603
  • Kantarjian H, O’Brien S, Cortes J, Results of intensive chemotherapy in 998 patients aged 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 2006;106:1090-8
  • Wheatley K, Brookes CL, Howman AJ, Prognostic factor analysis of the survival of elderly patients with AML in the MRC AML 11 and LRF AML 14 trials. Br J Haematol 2009;145:598-605
  • Malfuson JV, Etienne A, Turlure P, Risk factors and decision criteria for intensive chemotherapy in older patients with acute myeloid leukemia. Haematologica 2008;93:1806-13
  • Plesa C, Le QH, Chelghoum Y, Prognostic index for older adult patients with newly diagnosed acute myeloid leukemia: the Edouard Herriot Hospital experience. Clin Leuk 2008;2:198-204
  • Röllig C, Thiede C, Gratmatzki M, A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood 2010;116:971-8
  • Sekeres MA, Elson P, Kalaycio ME, Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood 2009;113:28-36
  • Juliusson G, Antunovic P, Derolf A, Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia registry. Blood 2009;113:4179-87
  • Soriano AO, Yang H, Faderl S, Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 2007;110:2302-8
  • Blum W, Garzon R, Klisovic RB, Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 2010;107:7473-8
  • Fenaux P, Mufti GJ, Hellström-Lindberg E, Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010;28:562-9
  • Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 2010;28:556-61
  • Blum W, Schwind S, Tarighat SS, Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood 2012;119:6025-31
  • Thomas XG, Dmoszynska A, Wierzbowska A, Results from a randomized phase III trial of decitabine versus supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed AML. J Clin Oncol 2011;29(Suppl):abstract 6504.
  • Chen Y, Cortes J, Estrov Z, Persistence of cytogenetic abnormalities at complete remission after induction in patients with acute myeloid leukemia: prognostic significance and the potential role of allogeneic stem-cell transplantation. J Clin Oncol 2011;29:2507-13
  • Ossenkoppele GJ, van de Loosdrecht AA, Schuurhuis GJ. Review of the relevance of aberrant antigen expression by flow cytometry in myeloid neoplasms. Br J Haematol 2011;153:421-36
  • Blum W, Klisovic RB, Hackanson B, Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007;25:3884-91
  • Thomas X, Chelghoum Y, Barraco F, Troncy J. The rationale and use of hypomethylation agents in adult acute myeloid leukemia. Exp Opin Drug Discov 2009;4:195-205
  • Garcia-Manero G, Gore SD, Cogle CR, Evaluation of oral azacitidine using extended treatment schedules : a phase I study. Blood 2010;116(Suppl):abstract 603
  • Cheng JC, Yoo CB, Weisenberger DJ, Preferential response of cancer cells to zebularine. Cancer Cell 2004;6:151-8
  • Plumb JA, Strathdee G, Sludden J, Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promotor. Cancer Res 2000;60:6039-44.
  • Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 2005;4:549-51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.