370
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Microwave and continuous flow technologies in drug discovery

, &
Pages 1107-1128 | Published online: 24 Sep 2012

Bibliography

  • Paul SM, Mutelka DS, Dunwiddie CT, How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Disc 2010;9:203-14
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22:151-85
  • Adams CP, Brantner VV. Spending on New Drug Development. Health Econ 2010;19:130-41
  • Bunsen R, Roscoe H. Photochemische Untersuchungen. Annalen der Physik 1857;176(1):43-88
  • Gedye R, Smith F, Westaway K, The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 1986;27(3):279-82
  • Giguere RJ, Bray TL, Duncan SM. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 1986;27(41):4945-8
  • SciFinder Scholar. version 2012. Search term "Microwave Organic Synthesis". Chemical Abstracts Services Columbus, OH, 2012. [Accessed 16 April 2012]
  • Strauss CR, Trainor RW. Developments in microwave-assisted organic chemistry. Austrialian J Chem 1995;48:1665-92
  • Lidström P, Tierney J, Wathey B, Microwave assisted organic synthesis-a review. Tetrahedron 2001;57:9225-83
  • Lew A, Krutzik PO, Hart ME, Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J Comb Chem 2002;4(2):95-105
  • Hayes BL. Recent Advances in Microwave-Assisted Synthesis. Aldrichim Acta 2004;37(2):66-76
  • Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem 2004;43:6250-84
  • Kappe CO, Dallinger D. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Mol Divers 2009;13:71-193
  • Caddick S, Fitzmaurice R. Microwave enhanced synthesis. Tetrahedron 2009;65:3325-55
  • Vasudevan A. Microwave-assisted organic synthesis- an enabling technology with disruptive potential. Drug Discov World 2008;3;83-90
  • Tierney JP, Lidström P. Microwave assisted organic synthesis. Blackwell; Oxford, UK: 2005
  • Loupy A. Microwaves in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2004
  • Hayes BL. Microwave synthesis chemistry at the speed of light. CEM Publishing; Matthews, NC: 2002
  • Kappe CO, Dallinger D, Murphree SS. Practical microwave synthesis for organic chemistrys: strategies, instruments, and protocols. In: Practical microwave synthesis for organic chemists: strategies, instruments, and protocols. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2009
  • Cao P, Leadbeater NE. Microwave heating as a tool for drug discovery. Microwave heating as a tool for sustainable chemistry. CRC Press; Boca Raton, FL: 2010. p. 73-103
  • Kappe CO, Stadler A. Microwaves in organic and medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim Germany: 2005. Available at http://www.chemtrix.com/img/library/1-Micromixers.pdf [Accssed 26 April 2012]
  • Stinson S. Use of microwave heating to speed organic reactions continues to grow. Chem Eng News 1996;74(21):45-6
  • Kuhnert N. Microwave-assisted reactions in organic synthesis-are there any nonthermal microwave effects? Angew Chem 2002;41(11):1863-6
  • Bradley D. The nuke's the thing for synthesis. Mod Drug Discov 2001;4(8):32-4, 36
  • Bharate SB, Bhutani KK, Singh IP. Microwave chemistry: a new technique in drug discovery. Express Pharma Pulse 2004. Available at http://www.expresspharmaonline.com/20041223/technologytrendz02.shtml [Last Accssed 21 April 2012]
  • Dutton G. Employing microwaves to accelerate synthesis. Genetic Eng News 2002;22(14):12-17
  • Adam D. Microwave chemistry: out of the kitchen. Nature 2003;421:571-2
  • Edwards P. More microwave reactors required. Drug Discov Today 2001;6(12):614
  • Strauss CR. Microwave-assisted reactions in organic synthesis-are there any nonthermal microwave effects? Respone to the hightlight by N. Kuhnert. Angewandte Chemie 2002;41(19):3589-90
  • Dagani R. Molecule magic with microwaves. Chem Eng News 1997;75(6):26-33
  • Marx V. Riding the microwave. Chem Eng News 2004;83;14-19
  • Yarnell A. Microwaves beam into biosciences. Chem Eng News 2007;85;32-3
  • Leadbeater N. Making microwaves. Chem World 2004;1:38-41
  • Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 2006;5:51-64
  • Taylor M, Atri BS, Minhas S. Developments in microwave chemistry. Evalueserve 2005. Available at http://www.rsc.org/images/evaluserve_tcm18-16758.pdf [Last Accssed 18 April 2012]
  • Gabriel C, Gabriel S, Grant EH, Dieletric parameters relevant to microwave dielectric heating. Chem Soc Rev 1998;27:213-23
  • Kappe CO. Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 2008;37:1127-39
  • Gising J, Odell LR, Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitus C. Org Biomol Chem 2012;10:2713-19
  • Öhrngren P, Fardost A, Russo F, Evaluation of a nonresonant microwave applicator for continous-flow chemistry applications. Org Process Res Dev 2012;16:1053-63
  • Kappe CO. Microwave-enhanced chemistry- enabling technology revolutionising organic synthesis and drug discovery. Future Drug Discov 2003;42-4
  • Colombo M, Peretto I. Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov Today 2008;13(15/16):677-84
  • Mavandadi F, Pilotti Å. The impact of microwave-assisted organic synthesis in drug discovery. Drug Discov Today 2006;11(3/4):165-74
  • Liu H, Zhang L. Microwave heating in organic synthesis and drug discovery. In: Chandra U, ed. Microwave heating. InTech; Shanghai, China: 2011
  • Wagner R. Microwave-assisted synthesis in the pharmaceutical industry a current perspective and future prospects. Drug Discov World 2006;7(3):59-67
  • Larhed M, Hallberg A. Microwave-assisted high speed chemistry: a new technique in drug discovery. Drug Discov Today 2001;6(8):406-16
  • Wathey B, Tierney J, Lidström P, The impact of microwave-assisted organic synthesis on drug discovery. Drug Discov Today 2002;7(6):373-80
  • Mavandadi F, Lidström P. Microwave-asssited chemistry in drug discovery. Curr Top Med Chem 2004;4:773-92
  • Nascinmento-Júnior NM, Kümmerle AE, Barreiro EJ, MAOS and medicinal chemistry: some important examples from the last years. Molecules 2011;16:9274-97
  • Larhed M, Moberg C, Hallberg A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc Chem Res 2002;35:717-27
  • Beletskaya IP, Cheprakov AV. The heck reaction as a sharpening stone of palladium catalysis. Chem Rev 2000;1000:3009-66
  • Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998. J Organometallic Chem 1999;576:147-68
  • Larhed M, Lindeberg G, Hallberg A. Rapid microwave-assisted suzuki coupling on solid-phase. Tetrahedron Lett 1996;37(45):8219-22
  • Leadbeater NE. Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration. Chem Commun 2005(23):2881-902
  • He P, Haswell SJ, Fletcher PDI. Microwave heating of heterogeneously catalyzed Suzuki reactions. Lab Chip 2004;4(1):38-41
  • Arvela RK, Leadbeater NE. Suzuki coupling of Aryl chlorides with phenylboronic acid in water, using microwave heating with simultaneous cooling. Org Lett 2005;7(11):2101-4
  • Arvela RK, Leadbeater NE, Collins MJ Jr. Automated batch scale-up of microwave-promoted Suzuki and Heck coupling reactions in water using ultra-low metal catalyst concentrations. Tetrahedron 2005;61:9349-55
  • Moos WH, Hurt CR, Morales GA. Combinatorial chemistry: oh what a decade or two can do. Mol Divers 2009;13:241-5
  • Geysen HM, Schoenen F, Wagner D, Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Drug Discov 2003;2:222-30
  • Stadler A, Kappe CO. High-speed couplings and cleavages in microwave-heated, solid-phase reaction at high temperatures. Eur J Org Chem 2001(5):919-25
  • Stadler A, Kappe CO. The effect of microwave irradiation on carbodiimide-mediated esterifications on solid support. Tetrahedron 2001;57:3915-20
  • Bacsa B, Bősze S, Kappe CO. Direct solid-phase synthesis of the β-amyloid (1-42) peptide using controlled microwave heating. J Org Chem 2010;75:2103-6
  • Murray JK, Gellman SH. Microwave-assisted parallel synthesis of a 14-Helical β-Peptide library. J Comb Chem 2006;8:58-65
  • Ghanbari MM, Mahdavinia GH, Safari J, Microwave-assisted solid-phase synthesis of 4,5-Dihydroxy-1,3-dialkyl-4,5-diarylimidazolidine-2-thione and Thiohydantoins. Synth Commun 2011;41(16):2414-20
  • Grauer A, Konig B. Peptidomimetics-a versatile route to biologically active compounds. Eur J Org Chem 2009(30):5099-111
  • Freeman NS, Tal-Gan Y, Klein S, Microwave-assisted solid-phase aza-peptide synthesis: aza scan of a PKB/AKT inhibitor using aza-arginine and aza-proline precursors. J Org Chem 2011;76:3078-85
  • Ovadia O, Greenberg S, Laufer B, Improvement of drug-like properties of peptides: the somatostatin paradigm. Expert Opin Drug Discov 2010;5(7):655-71
  • Dai W-M, Shi J. Diversity-oriented synthesis and solid-phase organic synthesis under controlled microwave heating. Comb Chem High Throughput Screen 2007;10:837-56
  • Widler L, Jaeggi KA, Glatt M, Highly potent geminal bisphosphonates. from pamidronate disodium(Aredia) to Zoledronic Acid(Zometa). J Med Chem 2002;45:3721-38
  • Russell RGG, Watts NB, Ebetino FH, Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 2008;19:733-59
  • Mustafa DA, Kashemirov BA, McKenna CE. Microwave-assisted synthesis of nitrogen-containing 1-hydroxymethylenebisphosphonate drugs. Tetrahedron Lett 2011;52:2285-7
  • Shi F, Zeng X-N, Zhang G, Facile synthesis of new 4-aza-podophyllotoxin analogs via microwave-assisted multi-component reactions and evaluations of their cytotoxic activity. Bioorg Med Chem Lett 2011;21:7119-23
  • Olsson R, Hansen HC, Andersson C-M. Microwave-assisted solvent-free parallel synthesis of thioamides. Tetrahedron Lett 2000;41:7947-50
  • Stadler A, Kappe CO. Automated library generation using sequential microwave-assisted chemistry. application toward the biginelli multicomponent condensation. J Comb Chem 2001;3:624-30
  • Evans MD, Ring J, Schoen A, The accelerated development of an optimized synthesis of 1,2,4-oxadiazoles: application of microwave irradiation and statistical design of experiments. Tetrahedron Lett 2003;44:9337-41
  • Murray JK, Farooqu B, Sadowsky JD, Efficient synthesis of a β-Peptide combinatorial library with microwave irradiation. J Am Chem Soc 2005;127:13271-80
  • Han W-Y, Zhang Z-T, Qiu L, Microwave irradiation for accelerating synthesis of 5,6-Diphenylimidazo[1,2-a]pyrimidines based of isoflavones. Synth Commun 2011;41(24):3590-9
  • Fantini M, Zuliani V, Spotti MA, Microwave assisted efficient synthesis of imidazole-based privileged structures. J Comb Chem 2010;12:181-5
  • Bremner WS, Organ MG. Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 2007;9:14-16
  • Srinivasan KV, Chaskar PK, Dighe SN, Microwave assisted synthesis of fused heterocyclic compounds. Heterocycles 2011;83(11):2451-87
  • Zhao Z, Leister WH, Strauss KA, Broadening the scope of 1,2,4-triazine synthesis by the application of microwave technology. Tetrahedron Lett 2003;44:1123-7
  • Takvorian AG, Combs AP. Microwave-assisted organic synthesis using minivals to optimize and expedite the synthesis of diverse purine libraries. J Comb Chem 2004;6:171-4
  • Moseley JD, Kappe CO. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 2011;13:794-806
  • Neochoritis CG, Zarganes-Tzitzikas T, Tsoleridis CA, One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur J Med Chem 2011;46:297-306
  • Patil DA, Jain KS, Deodhar MN, Development of novel, alternative, facile, ecofriendly, high yield synthetic process for prazosin. J Clin Pharm 2010;1(4):223-30
  • Roberts BA, Strauss CR. Toward rapid, "Green", predictable microwave-assisted synthesis. Acc Chem Res 2005;38(8):653-61
  • Kremsner JM, Kappe CO. Microwave-assisted organic synthesis in near-critical water at 300°C - a proof-of-concept study. Eur J Org Chem 2005;17;3672-9
  • Pedersen S, Tofteng A, Malik L, Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 2012;41:1826-44
  • Pohl NLB, Kirshenbaum K, Yoo B, Student-driven design of peptide mimetics: microwave-assisted synthesis of peptoid oligomers. J Chem Educ 2011;88:999-1001
  • Juan H-F, Chang S-C, Huang H-C, A new application of microwave technology to proteomics. Proteomics 2005;5:840-2
  • Pramanik BN, Mirza UA, Ing YH, Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci 2002;11:2676-87
  • Zhong H, Marcus SL, Li L. Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom 2005;16:471-81
  • Han W-Y, Zhang Z-T, Qiu L, Microwave irradiation for accelerating synthesis of 5,6-diphenylimidazo[1,2-a]pyrimidines based on isoflavones. Synth Commun 2011;41:3590-9
  • Olafsen T, Sirk S, Olma S, ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol 2012;33(3):669-77
  • Wang M-W, Zhang Y-P, Zhang Y-J, Module-assisted one-pot synthesis of [18F]SFB for radiolabeling proteins. J Radioanal Nucl Chem 2011;289:191-6
  • Kallmerten AE, Alexander A, Wager KM, Microwave accelerated labeling methods in the synthesis of radioligands for positron emission tomography imaging. Curr Radiopharm 2011;4:343-54
  • Kallmerten AE, Jones GB. Microwave accelerated synthesis of PET image contrast agents for AD research. Curr Alzheimer Res 2010;7:251-4
  • Wager KM, Jones GB. Radio-iodination methods for the production of spect imaging agents. Curr Radiopharm 2010;3(1):37-45
  • LaBeaume P, Placzek M, Daniels M, Microwave-accelerated fluorodenitrations and nitrodehalogenations: expeditious routes to labeled PET ligands and fluoropharmaceuticals. Tetrahedron Lett 2010;51:1906-9
  • Liu K, Lepin EJ, Wang M-W, Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Mol Imaging 2011;10:168-76
  • Placzek M, LaBeaume P, Harris L, Microwave accelerated three-component fluoroalkylations: expeditious routes to fluoropharmaceuticals and PET ligands. Tetrahedron Lett 2011;52:332-5
  • LaBeaume P, Dong M, Sitkovsky M, An efficient route to xanthine based A2A adenosine receptor antagonists and functional derivatives. Org Biomol Chem 2010;8:4155-7
  • Zhou T, Shi Q, Chen C-H, Anti-AIDS agents 79. design, synthesis, molecular modeling and structure-activity relationships of novel dicamphanoyl-2',2'-dimethyldihydropyranochromone (DCP) analogs as potent anti-HIV agents. Bioorg Med Chem 2010;18:6678-89
  • Zhou T, Shi Q, Lee KH. Anti-AIDS agents 83. Efficient microwave-assisted one-pot preparation of angular 2,2-dimethyl-2H-chromone containing compounds. Tetrahedron Lett 2010;51:4382-6
  • Ferro S, De LL, Barreca ML, New chloro,fluorobenzylindole derivatives as integrase strand-transfer inhibitors (INSTIs) and their mode of action. Bioorg Med Chem 2010;18:5510-18
  • Tang J, Maddali K, Sham YY, 3-Hydroxypyrimidine-2,4-diones as an inhibitor scaffold of HIV integrase. J Med Chem 2011;54:2282-92
  • Mahalingam AK, Axelsson L, Ekegren JK, HIV-1 protease inhibitors with a transition-state mimic comprising a tertiary alcohol: improved antiviral activity in cells. J Med Chem 2010;53:607-15
  • Williams PD, Staas DD, Venkatraman S, Potent and selective HIV-1 ribonuclease H inhibitors based on a 1-hydroxy-1,8-naphthyridin-2(1H)-one scaffold. Bioorg Med Chem Lett 2010;20:6754-7
  • Zhang H-w, Detorio M, Herman BD, Synthesis, antiviral activity, cytotoxicity and cellular pharmacology of L-3'-azido-2',3'-dideoxypurine nucleosides. Eur J Med Chem 2011;46:3832-44
  • Ax A, Joshi AA, Orrling KM, Synthesis of a small library of non-symmetric cyclic sulfamide HIV-1 protease inhibitors. Tetrahedron 2010;66:4049-56
  • Balamurugan K, Jeyachandran V, Perumal S, A microwave-assisted, facile, regioselective Friedlaender synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2-b]quinolines. Eur J Med Chem 2010;45:682-8
  • Manna K, Agrawal YK. Design, synthesis, and antitubercular evaluation of novel series of 3-benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin analogs. Eur J Med Chem 2010;45:3831-9
  • Bairwa R, Kakwani M, Tawari NR, Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents. Bioorg Med Chem Lett 2010;20:1623-5
  • Andaloussi M, Henriksson LM, Wieckowska A, Design, Synthesis, and X-ray Crystallographic Studies of Œ±-Aryl Substituted Fosmidomycin Analogues as Inhibitors of Mycobacterium tuberculosis 1-Deoxy-D-xylulose 5-Phosphate Reductoisomerase. J Med Chem 2011;54:4964-76
  • Torres E, Moreno E, Ancizu S, New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem Lett 2011;21:3699-703
  • Manjashetty TH, Yogeeswari P, Sriram D. Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg Med Chem Lett 2011;21:2125-8
  • Andaloussi M, Lindh M, Bjoerkelid C, Substitution of the phosphonic acid and hydroxamic acid functionalities of the DXR inhibitor FR900098: an attempt to improve the activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett 2011;21:5403-7
  • Gising J, Nilsson MT, Odell LR, Trisubstituted imidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors. J Med Chem 2012;55:2894-8
  • Lopez-Cara LC, Conejo-Garcia A, Marchal JA, New (RS)-benzoxazepin-purines with antitumor activity: the chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine. Eur J Med Chem 2010;46:249-58
  • Kumar D, Reddy VB, Kumar A, Click chemistry inspired one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory activity. Bioorg Med Chem Lett 2011;21:449-52
  • Kayagil I, Demirayak S. Synthesis of some 2,3,6,8-tetraarylimidazo[1,2-a]pyrazine derivatives by using either reflux or microwave irradiation method, and investigation their anticancer activities. Turk J Chem 2011;35:13-24
  • Gising J, Odell LR, Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C. Org Biomol Chem 2012;10:2713-29
  • Gaonkar SL, Shimizu H. Microwave-assisted synthesis of the antihyperglycemic drug rosiglitazone. Tetrahedron 2010;66:3314-17
  • Sidhu PS, Liang A, Mehta AY, Rational Design of Potent, Small, Synthetic Allosteric Inhibitors of Thrombin. J Med Chem 2011;54:5522-31
  • Nascimento-Junior NM, Mendes TCF, Leal DM, Microwave-assisted synthesis and structure-activity relationships of neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives. Bioorg Med Chem Lett 2010;20:74-7
  • Martyn DC, Nijjar A, Celatka CA, Synthesis and antiplasmodial activity of novel 2,4-diaminopyrimidines. Bioorg Med Chem Lett 2010;20:228-31
  • Spencer J, Rathnam RP, Harvey AL, Synthesis and biological evaluation of 1,4-benzodiazepin-2-ones with antitrypanosomal activity. Bioorg Med Chem 2011;19:1802-15
  • Paloque L, Bouhlel A, Curti C, Synthesis and evaluation of monoamidoxime derivatives: toward new antileishmanial compounds. Eur J Med Chem 2011;46:2984-91
  • Ajani OO, Obafemi CA, Nwinyi OC, Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg Med Chem 2010;18:214-21
  • Subashini R, Khan F-RN. Solvent-free synthesis and antibacterial studies of some quinolinones. Monatsh Chem 2012;143:485-9
  • Pagadala R, Meshram JS, Chopde HN, Prediction of theoretical physicochemical properties and one-pot synthesis of bis-azetidinones by [2 + 2] ketene - imine cycloaddition in the presence of montmorillonite. Med Chem 2011;7:325-32
  • De SR, Chini MG, Bruno I, Structure-based discovery of inhibitors of microsomal prostaglandin E2 Synthase-1, 5-Lipoxygenase and 5-Lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 2011;54:1565-75
  • Mane BY, Vidyadhara S. Microwave-assisted synthesis of carboxanilides as non steroidal anti-inflammatory agents. Res J Pharm Biol Chem Sci 2011;2:798-804
  • Ehrfield W. Microreactors: new technology for modern chemistry. Weinheim. Germany: Wiley-VCH; 2000
  • Fletcher PDI, Haswell SJ, Pombo-Villar E, Micro reactors: principles and applications in organic synthesis. Tetrahedron 2002;58:4735-57
  • Watts P, Haswell SJ. Continuous flow reactors for drug discovery. Drug Discov Today 2003;8(13):586-93
  • Jas G, Kirschning A. Continuous flow techniques in organic synthesis. Chemistry 2003;9:5708-23
  • Weigl BH, Bardell RL, Carbrera CR. Lab-on-a-chip for drug development. Adv Drug Deliv Rev 2003;55:349-77
  • Watts P, Haswell SJ. Microfluidic combinatorial chemistry. Curr Opin Chem Biol 2003;7:380-7
  • Pennemann H, Watts P, Haswell SJ, Benchmarking of microreactor applications. Org Proc Res Dev 2004;8:422-39
  • Watts P. Continuous flow microreactors for drug discovery. Curr Opin Drug Discov Dev 2004;7(6):807-12
  • Watts P, Haswell SJ. The application of micro reactors for organic synthesis. Chem Soc Rev 2005;34:235-46
  • Pihl J, Karlsson M, Chiu DT. Microfludic technologies in drug discovery. Drug Discov Today 2005;10(20):1377-83
  • Watts P. The application of microreactors in combinatorial chemistry. QSAR Comb Sci 2005;24:701-11
  • Geyer K, Codée JDC, Seeberger PH. Microreactors as tools for synthetic chemists- the chemists' round-bottomed flash of the 21st century? Chemistry 2006;12:8434-42
  • Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Drug Disco 2006;5:210-18
  • Kang L, Chung BG, Lander R, Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today 2008;13(1/2):1-13
  • Fortunak J, Confalone PN, Grosso JA. Microreactors for continuous processing- How close to commercial utility? Curr Opin Drug Discov Dev 2010;13(6):642-4
  • Illg T, Löb P, Hessel V. Flow chemistry using milli- and microstructured reactors- from conventional to novel process windows. Bioorg Med Chem 2010;18:3707-19
  • Mawatari K, Kazoe Y, Aota A, Microflow systems for chemical synthesis and analysis: approached to full integration of chemical process. J Flow Chem 2011;1:3-12
  • Wegner J, Ceylan S, Kirschning A. Ten key issues in modern flow chemistry. Chem Commun 2011;47:4583-92
  • Hartman RL, McMullen JP, Jensen KF. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew Chem Int Ed Engl 2011;50:7502-19
  • Wegner J, Ceylan S, Kirschning A. Flow chemistry- a key enabling technology for (multistep) organic synthesis. Adv Synth Catal 2012;354:17-57
  • Wirth T. Flow chemistry: enabling technology in drug discovery and process research. ChemSusChem 2012;5:215-16
  • Watts P, Wiles C. Recent advances in synthetic micro reaction technology. Chem Commun 2007;5:443-67
  • Wiles C, Watts P. Micro reaction technology in organic synthesis. CRC Press; Boca Raton, FL: 2011
  • Salimi-Moosavi H, Tang T, Harrison DJ. Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips. J Am Chem Soc 1997;119(37):8716-17
  • Wiles C. Application Note 1: The use of Static Micro Mixers within Labtrix® Micro Reactors. Chemtrix BV 2010. Available at http://www.chemtrix.com/img/library/1-Micromixers.pdf [Last Accssed 21 April 2012]
  • Razzaq T, Kappe CO. Continuous flow organic synthesis under high-termpature/pressure conditions. Chemistry 2010;5:1274-89
  • Martin RE, Morawitz F, Kuratil C, Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-diels-alder reaction under superheated continuous flow conditions. Eur J Org Chem 2012;1;47-52
  • Fang H, Xiao Q, Wu F, Rapid catalyst screening by a continuous-flow microreactor interfaced with ultra-high-pressure liquid chromatography. J Org Chem 2010;75:5619-26
  • Rueping M, Bootwicha T, Sugiono E. Continuous-flow caralytic asymmetric hydrogenations: reaction optimization using FTIR inline analysis. Beilstein J Org Chem 2012;8:300-7
  • Qian Z, Baxendale IR, Ley SV. A continuous flow process using a sequence of microreactors with in-line ir analysis for the preparation of N,N-Diethyl-4-(3-fluorophenylpiperidin-4-ylidenemethyl)benzamide as a potent and highly selective δ-opioid receptor agonist. Chemistry 2010;16:12342-8
  • Mozharov S, Nordon A, Littlejohn D, Improved method for kinectic studies in microreactors using flow manipulation and noninvasive raman spectrometery. J Am Chem Soc 2011;133:3601-8
  • Garcia-Egido E, Spikmans V, Wong SYF, Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 2003;3:73-6
  • Hartman RL. Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 2012;16(5):870-87
  • Baxendale IR, Ley SV. Polymer-supported reagents for multi-step organic synthesis: application to the synthesis of sildenafil. Bioorg Med Chem Lett 2000;10:1983-6
  • Noël T, Maimone TJ, Buchwald SL. Accelerating palladium-catalyzed C-F Bond formation: use of a microflow packed-bed reactor. Angew Chem 2011;50:8900-3
  • Naber JR, Buchwald SL. Packed-bed reactors for continuous-flow C-N cross-coupling. Angew Chem Int Ed Engl 2010;49:9469-74
  • Wiles C, Watts P. Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated SnAR reaction. Beilstein J Org Chem 2011;7:1360-71
  • Herath A, Cosford NDP. One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 2010;12(22):5182-5
  • Baumann M, Baxendale IR, Kirschning A, Synthesis of highly substituted nitropyrrolidines, nitropyrrolizines and nitropyrroles via multicomponent-multistep sequences with a flow reactor. Heterocycles 2011;82(2):1297-316
  • Pagano N, Herath A, Cosford NDP. An Automated Process for a Sequential Heterocycle/Multicomponent Reaction: multistep Continuous Flow Synthesis of 5-(Thiazol-2-yl)-3,4-Dihydropyrimidin-2(1H)-ones. J Flow Chem 2011;1:28-31
  • Baumann M, Baxendale IR, Brasholz M, An integrated flow and batch-based approach for the synthesis of O-Methyl Siphonazole. Synlett 2011;10:1375-80
  • Mutulis F, Tysk M, Mutule I, A simple and effective methods for producting nonrandom peptide libraries using cotton as a carrier in continuous flow peptide synthesizers. J Comb Chem 2003;5(1):1-7
  • Kundu S, Bhangale S, Wlalace WE, Continuous flow enzyme-catalyzed polymerizatoin in a microreactor. J Am Chem Soc 2011;133:6006-11
  • Yamaguchi H, Miyazaki M, Kawazumi H, Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis. Anal Biochem 2010;407:12-18
  • McCalla SE, Tripathi A. Quantifying Transcription of Clinically Relevant Immobilized DNA within a Continuous Flow Microfluidic Reactor. Langmuir 2010;26(17):14372-9
  • Nieuwland PJ, Segers R, Koch K, Fast scale-up using microreactors: pyrrole synthesis from micro to production scale. Org Process Res Dev 2011;15:783-7
  • Brasholz M, Macdonald JM, Saubern S, A gram-scale batch and flow total synthesis of perhydrohistrionicotoxin. Chemistry 2010;16:11471-80
  • Zaborenko N, Bedore MW, Jamison TF, Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures. Org Process Res Dev 2011;15:131-9
  • Hopkin MD, Baxendale IR, Ley SV. A flow-based synthesis of Imatinib: the API of Gleevec. Chem Commun 2010;46:2450-2
  • Venturoni F, Nikbin N, Ley SV, The application of flow microreactors to the preparation of a family of casein kinase I inhibitors. Org Biomol Chem 2010;8:1798-806
  • Carter CF, Baxendale IR, Pavey JBJ, The continuous flow synthesis of butane-2,3-diacetal protected building blocks using microreactors. Org Biomol Chem 2010;8:1588-95
  • Kashiwagi T, Amemiya F, Fuchigami T, In situ electrogeneration of o-benzoquinone and high yield reaction with benzenethiols in a microflow system. Chem Commun 2012;48:2806-8
  • Du L-H, Luo X-P. Lipase-catalyzed regioselective acylation of sugar in microreactors. RSC Adv 2012;2:2663-5
  • Glasnov TN, Kappe CO. Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 2007;28:395-410
  • Cablewski T, Faux AF, Strauss CR. Development and application of a continuous microwave reactor for organic synthesis. J Org Chem 1994;59:3408-12
  • Wilson NS, Sarko CR, Roth GP. Development and applications of a practical continuous flow microwave cell. Org Proc Res Dev 2004;8:535-8
  • Comer E, Organ MG. A microcapillary system for sumultaneous, parallel microwave-assisted synthesis. Chemistry 2005;11:7223-7
  • Comer E, Organ MG. A microreactor for microwave-assisted capillary(continuous flow) organic synthesis. J Am Chem Soc 2005;127:8160-7
  • Bagley MC, Jenkins RL, Lubinu MC, A simple continuous flow microwave reactor. J Org Chem 2005;70:7003-6
  • Glasnov TN, Kappe CO. The Microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chemistry 2011;17:11956-68
  • Khadilkar BM, Madyar VR. Scaling up of dihydropyridine ester synthesis by using aqueous hydrotope solutions in a continuous microwave reactor. Org Process Res Dev 2001;5:452-5
  • Smith CJ, Islesias-Sigüenza FJ, Baxendale IR, Flow and batch mode focused microwave synthesis of 5-amino-4-cyanopyrazoles and their further conversion to 4-aminopyrazolopyrimidines. Org Biomol Chem 2007;5:2758-61
  • Damm M, Glasnov TN, Kappe CO. Translating high-temperature microwave chemistry to scalable continuous flow processes. Org Process Res Dev 2010;14:215-24
  • He P, Haswell SJ, Fletcher PDI. Microwave-assisted Suzuki reactions in a continuous flow capillary reactor. Applied Catalysis A General 2004;274:111-14
  • He P, Haswell SJ, Fletcher PDI. Microwave heating of heterogeneously catalysed Suzuki reactions in a micro reactor. Lab Chip 2004;4:38-41
  • He P, Haswell SJ, Fletcher PDI, Scaling up of continuous-flow, microwave-assisted, organic reactions by varying the size of Pd-functionalized catalytic monoliths. Beilstein J Org Chem 2011;7:1150-7
  • de la Hoz A, Díaz-Ortiz Á, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 2004;34:164-78
  • Raner KD, Strauss CR, Vyakoc F, A Comparison of reaction kinetics observed under microwave irradiation and conventional heating. J Org Chem 1993;58(4):950-3
  • Perreux L, Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001;57:9199-223
  • Langa F, de la Cruz P, de la Hoz A, Microwave irradiation: more than just a method for accelerating reactions. Contemp Org Synth 1997;4:373-86
  • Obermayer D, Guttman B, Kappe CO. Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew Chem 2009;48(44):8321-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.