271
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Screening for small molecule inhibitors of Toxoplasma gondii

Pages 1193-1206 | Published online: 24 Sep 2012

Bibliography

  • Dabritz HA, Conrad PA. Cats and Toxoplasma: implications for public health. Zoonoses Public Health 2010;57:34-52
  • Bowie WR, King AS, Werker DH, Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 1997;350:173-7
  • Jackson MH, Hutchison WM. The prevalence and source of toxoplasma infection in the environment. Adv Parasitol 1989;28:55-105
  • Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000;30:1217-58
  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004;363:1965-76
  • Khan A, Jordan C, Muccioli C, Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg Infect Dis 2006;12:942-9
  • Radke JR, White MW. A cell cycle model for the tachyzoite of Toxoplasma gondii using the herpes simplex virus thymidine kinase. Mol Biochem Parasitol 1998;94:237-47
  • Kirchhoff LV, Weiss LM, Wittner M. Parasitic diseases of the heart. Front Biosci 2004;9:706-23
  • Boyer KM, Holfels E, Roizen N, Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening. Am J Obstet Gynecol 2005;192:564-71
  • Roberts F, Mets MB, Ferguson DJ, Histopathological features of ocular toxoplasmosis in the fetus and infant. Arch Ophthalmol 2001;119:51-8
  • Sullivan WJ Jr, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 2012;36:717-33
  • Kijlstra A, Jongert E. Control of the risk of human toxoplasmosis transmitted by meat. Int J Parasitol 2008;38:1359-70
  • Akyol A, Bicerol B, Ertug S, Epilepsy and seropositivity rates of toxocara canis and Toxoplasma gondii. Seizure 2007;16:233-7
  • Prandota J. The importance of Toxoplasma gondii infection in diseases presenting with headaches. Headaches and aseptic meningitis may be manifestations of the Jarisch-Herxheimer reaction. Int J Neurosci 2009;119:2144-82
  • Haroon F, Händel U, Angenstein F, Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One 2012;7:e35516
  • Van Voorhis WC. Therapy and prophylaxis of systemic protozoan infections. Drugs 1990;40:176-202
  • van der Ven AJ, Vree TB, Koopmans PP, van der Meer JW. Adverse reactions to co-trimoxazole in HIV infection: a reappraisal of the glutathione-hydroxylamine hypothesis. J Antimicrob Chemother 1996;37(Suppl B):55-60
  • Guay D. Update on clindamycin in the management of bacterial, fungal and protozoal infections. Expert Opin Pharmacother 2007;8:2401-44
  • Tawari NR, Bag S, Degani MS. A review of molecular modelling studies of dihydrofolate reductase inhibitors against opportunistic microorganisms and comprehensive evaluation of new models. Curr Pharm Des 2011;17:712-51
  • Bag S, Tawari NR, Queener SF, Degani MS. Synthesis and biological evaluation of biguanide and dihydrotriazine derivatives as potential inhibitors of dihydrofolate reductase of opportunistic microorganisms. J Enzyme Inhib Med Chem 2010;25:331-9
  • Bag S, Tawari NR, Degani MS, Queener SF. Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens. Bioorg Med Chem 2010;18:3187-97
  • Gangjee A, Adair OO, Pagley M, Queener SF. N9-substituted 2,4-diaminoquinazolines: synthesis and biological evaluation of lipophilic inhibitors of pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. J Med Chem 2008;51:6195-200
  • Gangjee A, Jain HD, Queener SF, Kisliuk RL. The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents. J Med Chem 2008;51:4589-600
  • Rosowsky A, Fu H, Chan DC, Queener SF. Synthesis of 2,4-diamino-6-[2'-O-(omega-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridine s as potent and selective inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. J Med Chem 2004;47:2475-85
  • Lin SS, Gross U, Bohne W. Type II NADH dehydrogenase inhibitor 1-hydroxy-2-dodecyl-4(1H)quinolone leads to collapse of mitochondrial inner-membrane potential and ATP depletion in Toxoplasma gondii. Eukaryot Cell 2009;8:877-87
  • Lin SS, Kerscher S, Saleh A, The Toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones. Biochim Biophys Acta 2008;1777:1455-62
  • Teo CF, Zhou XW, Bogyo M, Carruthers VB. Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother 2007;51:679-88
  • van der Ven AJ, Schoondermark-van de Ven EM, Camps W, Anti-toxoplasma effect of pyrimethamine, trimethoprim and sulphonamides alone and in combination: implications for therapy. J Antimicrob Chemother 1996;38:75-80
  • Chio LC, Bolyard LA, Nasr M, Queener SF. Identification of a class of sulfonamides highly active against dihydropteroate synthase form Toxoplasma gondii, pneumocystis carinii, and mycobacterium avium. Antimicrob Agents Chemother 1996;40:727-33
  • Allegra CJ, Boarman D, Kovacs JA, Morrison P. Interaction of sulfonamide and sulfone compounds with Toxoplasma gondii dihydropteroate synthase. J Clin Invest 1990;85:371-9
  • Vercesi AE, Rodrigues CO, Uyemura SA, Respiration and oxidative phosphorylation in the apicomplexan parasite Toxoplasma gondii. J Biol Chem 1998;273:31040-7
  • Hencken CP, Jones-Brando L, Bordón C, Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J Med Chem 2010;53:3594-601
  • Krivogorsky B, Pernat JA, Douglas KA, Structure-activity studies of some berberine analogs as inhibitors of Toxoplasma gondii. Bioorg Med Chem Lett 2012;22:2980-2
  • Gajria B, Bahl A, Brestelli J, ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 2008;36(Database issue):D553-6
  • Westbrook J, Feng Z, Chen L, The protein data bank and structural genomics. Nucleic Acids Res 2003;31:489-91
  • Agüero F, Al-Lazikani B, Aslett M, Genomic-scale prioritization of drug targets: the TDR targets database. Nat Rev Drug Discov 2008;7:900-7
  • Casper LH, Ware PL. Recognition and characterization of stage-specific oocyst/sporozoite antigens of Toxoplasma gondii by human antisera. J Clin Invest 1985;75(5):1570-7
  • Kappe SH, Buscaglia CA, Bergman LW, Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends Parasitol 2004;20:13-16
  • Striepen B, Jordan CN, Reiff S, van Dooren GG. Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 2007;3:e78
  • Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 1997;73:114-23
  • Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 2011;13:797-805
  • Mordue DG, Desai N, Dustin M, Sibley LD. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med 1999;190:1783-92
  • Charron AJ, Sibley LD. Molecular partitioning during host cell penetration by Toxoplasma gondii. Traffic 2004;5:855-67
  • Bergman LW, Kaiser K, Fujioka H, Myosin a tail domain interacting protein (MTIP) localizes to the inner membrane complex of plasmodium sporozoites. J Cell Sci 2003;116(Pt 1):39-49
  • Kortagere S, Welsh WJ, Morrisey JM, Structure-based design of novel small-molecule inhibitors of Plasmodium falciparum. J Chem Inf Model 2010;50:840-9
  • Kortagere S, Mui E, McLeod R, Welsh WJ. Rapid discovery of inhibitors of Toxoplasma gondii using hybrid structure-based computational approach. J Comput Aided Mol Des 2011;25:403-11
  • Bosch J, Turley S, Daly TM, Structure of the MTIP-MyoA complex, a key component of the malaria parasite invasion motor. Proc Natl Acad Sci USA 2006;103:4852-7
  • Sali A, Potterton L, Yuan F, Evaluation of comparative protein modeling by MODELLER. Proteins 1995;23:318-26
  • Carey KL, Westwood NJ, Mitchison TJ, Ward GE. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci USA 2004;101:7433-8
  • Evans KM, Haraldsen JD, Pearson RJ, Synthesis and chemical characterisation of target identification reagents based on an inhibitor of human cell invasion by the parasite Toxoplasma gondii. Org Biomol Chem 2007;5:2063-9
  • Heaslip AT, Leung JM, Carey KL, A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathog 2010;6:e1000720
  • Arastu-Kapur S, Ponder EL, Fonović UP, Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 2008;4:203-13
  • Hall CI, Reese ML, Weerapana E, Chemical genetic screen identifies toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc Natl Acad Sci USA 2011;108:10568-73
  • Alexander DL, Mital J, Ward GE, Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005;1:e17
  • Lebrun M, Michelin A, El Hajj H, The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 2005;7:1823-33
  • Besteiro S, Michelin A, Poncet J, Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009;5:e1000309
  • Straub KW, Cheng SJ, Sohn CS, Bradley PJ. Novel components of the apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 2009;11:590-603
  • Alexander DL, Arastu-Kapur S, Dubremetz JF, Boothroyd JC. Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryot Cell 2006;5:1169-73
  • Triglia T, Healer J, Caruana SR, Apical membrane antigen 1 plays a central role in erythrocyte invasion by plasmodium species. Mol Microbiol 2000;38:706-18
  • Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005;16:4341-9
  • Hehl AB, Lekutis C, Grigg ME, Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infect Immun 2000;68:7078-86
  • Hodder AN, Crewther PE, Anders RF. Specificity of the protective antibody response to apical membrane antigen 1. Infect Immun 2001;69:3286-94
  • Coley AM, Gupta A, Murphy VJ, Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody. PLoS Pathog 2007;3:1308-19
  • Henderson KA, Streltsov VA, Coley AM, Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2007;15:1452-66
  • Igonet S, Vulliez-Le Normand B, Faure G, Cross-reactivity studies of an anti-plasmodium vivax apical membrane antigen 1 monoclonal antibody: binding and structural characterisation. J Mol Biol 2007;366:1523-37
  • Harris KS, Casey JL, Coley AM, Binding hot spot for invasion inhibitory molecules on Plasmodium falciparum apical membrane antigen 1. Infect Immun 2005;73:6981-9
  • Lee EF, Yao S, Sabo JK, Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: identification of key binding residues. Biopolymers 2011;95:354-64
  • Harris KS, Casey JL, Coley AM, Rapid optimization of a peptide inhibitor of malaria parasite invasion by comprehensive N-methyl scanning. J Biol Chem 2009;284:9361-71
  • Kortagere S, Cocklin S, Loraiya K, Structure based design of novel small molecule inhibitors to apical membrane antigen-1 of Plasmodium falciparum. Presented at Intelligent Systems for Molecular Biology 2010 meeting, International Society for Computational Biology meeting; Boston, MA. 2010. Available from: http://f1000.com/posters/browse/summary/382 [Last accessed 22 May 2012]
  • Tonkin ML, Roques M, Lamarque MH, Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 2011;333:463-7
  • Lamarque M, Besteiro S, Papoin J, The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011;7:e1001276
  • Fomovska A, Huang Q, El Bissati K, Novel N-benzoyl-2-hydroxybenzamide disrupts unique parasite secretory pathway. Antimicrob Agents Chemother 2012;56:2666-82
  • Li H, Child MA, Bogyo M. Proteases as regulators of pathogenesis: examples from the apicomplexa. Biochim Biophys Acta 2012;1824(1):177-85
  • Kamau E, Meehan T, Lavine MD, A novel benzodioxole-containing inhibitor of Toxoplasma gondii growth alters the parasite cell cycle. Antimicrob Agents Chemother 2011;55:5438-51
  • Jones J, Lopez A, Wilson M. Congenital toxoplasmosis. Am Fam Physician 2003;67:2131-8
  • Carruthers VB, Suzuki Y. Effects of Toxoplasma gondii infection on the brain. Schizophr Bull 2007;33:745-51
  • Boyle JP, Radke JR. A history of studies that examine the interactions of toxoplasma with its host cell: emphasis on in vitro models. Int J Parasitol 2009;39:903-14
  • Contreras-Ochoa CO, Lagunas-Martínez A, Belkind-Gerson J, Correa D. Toxoplasma gondii invasion and replication in astrocyte primary cultures and astrocytoma cell lines: systematic review of the literature. Parasitol Res 2012; Epub ahead of print
  • Murphy RC, Ojo KK, Larson ET, Discovery of potent and selective inhibitors of calcium-dependent protein kinase 1 (CDPK1) from C. parvum and T. gondii. ACS Med Chem Lett 2010;1:331-5
  • Larson ET, Ojo KK, Murphy RC, Multiple determinants for selective inhibition of apicomplexan calcium-dependent protein kinase CDPK1. J Med Chem 2012;55:2803-10
  • Johnson SM, Murphy RC, Geiger JA, Development of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitors with potent anti-toxoplasma activity. J Med Chem 2012;55:2416-26
  • Ojo KK, Larson ET, Keyloun KR, Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol 2010;17:602-7
  • Sugi T, Kato K, Kobayashi K, Use of the kinase inhibitor analog 1NM-PP1 reveals a role for Toxoplasma gondii CDPK1 in the invasion step. Eukaryot Cell 2010;9:667-70
  • Pszenny V, Davis PH, Zhou XW, Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice. Infect Immun 2012;80:1156-65
  • Szajnman SH, Rosso VS, Malayil L, 1-(Fluoroalkylidene)-1,1-bisphosphonic acids are potent and selective inhibitors of the enzymatic activity of Toxoplasma gondii farnesyl pyrophosphate synthase. Org Biomol Chem 2012;10:1424-33
  • Rosso VS, Szajnman SH, Malayil L, Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2011;19:2211-17
  • Szajnman SH, García Liñares GE, Li ZH, Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2008;16:3283-90
  • Conde de Felipe MM, Lehmann MM, Jerome ME, White MW. Inhibition of Toxoplasma gondii growth by pyrrolidine dithiocarbamate is cell cycle specific and leads to population synchronization. Mol Biochem Parasitol 2008;157:22-31
  • Maubon D, Bougdour A, Wong YS, Activity of the histone deacetylase inhibitor FR235222 on Toxoplasma gondii: inhibition of stage conversion of the parasite cyst form and study of new derivative compounds. Antimicrob Agents Chemother 2010;54:4843-50
  • Strobl JS, Cassell M, Mitchell SM, Scriptaid and suberoylanilide hydroxamic acid are histone deacetylase inhibitors with potent anti-Toxoplasma gondii activity in vitro. J Parasitol 2007;93:694-700
  • Tipparaju SK, Muench SP, Mui EJ, Identification and development of novel inhibitors of Toxoplasma gondii enoyl reductase. J Med Chem 2010;53:6287-300
  • Kim YA, Rawal RK, Yoo J, Structure-activity relationships of carbocyclic 6-benzylthioinosine analogues as subversive substrates of Toxoplasma gondii adenosine kinase. Bioorg Med Chem 2010;18:3403-12
  • Bottova I, Sauder U, Olivieri V, The P-glycoprotein inhibitor GF120918 modulates Ca2+-dependent processes and lipid metabolism in Toxoplasma gondii. PLoS One 2010;5:e10062
  • Caldas LA, Attias M, de Souza W. Dynamin inhibitor impairs Toxoplasma gondii invasion. FEMS Microbiol Lett 2009;301:103-8
  • Larson ET, Parussini F, Huynh MH, Toxoplasma gondii cathepsin L is the primary target of the invasion-inhibitory compound morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl. J Biol Chem 2009;284:26839-50
  • Huang R, Que X, Hirata K, The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009;164:86-94
  • Strobl JS, Seibert CW, Li Y, Inhibition of Toxoplasma gondii and Plasmodium falciparum infections in vitro by NSC3852, a redox active antiproliferative and tumor cell differentiation agent. J Parasitol 2009;95:215-23
  • Moreno SN, Li ZH. Anti-infectives targeting the isoprenoid pathway of Toxoplasma gondii. Expert Opin Ther Targets 2008;12:253-63
  • Wei S, Daniel BJ, Brumlik MJ, Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalitozoon cuniculi infection. Antimicrob Agents Chemother 2007;51:4324-8
  • Liñares GG, Gismondi S, Codesido NO, Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation. Bioorg Med Chem Lett 2007;17:5068-71
  • Smith AT, Livingston MR, Mai A, Quinoline derivative MC1626, a putative GCN5 histone acetyltransferase (HAT) inhibitor, exhibits HAT-independent activity against Toxoplasma gondii. Antimicrob Agents Chemother 2007;51:1109-11
  • Dantas-Leite L, Urbina JA, de Souza W, Vommaro RC. Selective anti-Toxoplasma gondii activities of azasterols. Int J Antimicrob Agents 2004;23:620-6
  • Morris MT, Coppin A, Tomavo S, Carruthers VB. Functional analysis of Toxoplasma gondii protease inhibitor 1. J Biol Chem 2002;277:45259-66
  • Shaw MK, He CY, Roos DS, Tilney LG. Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology 2000;121(Pt 1):35-47
  • Asai T, Takeuchi T, Diffenderfer J, Sibley LD. Identification of small-molecule inhibitors of nucleoside triphosphate hydrolase in Toxoplasma gondii. Antimicrob Agents Chemother 2002;46:2393-9
  • Paugam A, Creuzet C, Dupouy-Camet J, Roisin P. In vitro effects of gliotoxin, a natural proteasome inhibitor, on the infectivity and proteolytic activity of Toxoplasma gondii. Parasitol Res 2002;88:785-7
  • Jelenska J, Sirikhachornkit A, Haselkorn R, Gornicki The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J Biol Chem 2002;277:23208-15
  • Zuther E, Johnson JJ, Haselkorn R, Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci USA 1999;96:13387-92
  • Buitrago-Rey R, Olarte J, Gomez-Marin JE. Evaluation of two inhibitors of invasion: LY311727 [3-(3-acetamide-1-benzyl-2-ethyl-indolyl-5-oxy)propane phosphonic acid] and AEBSF [4-(2-aminoethyl)-benzenesulphonyl fluoride] in acute murine toxoplasmosis. J Antimicrob Chemother 2002;49:871-4
  • Alvarez F, Ghérardi A, Nebois P, Benzimidazole-4,7-diones as inhibitors of protozoal (Toxoplasma gondii) purine nucleoside phosphorylase. Bioorg Med Chem Lett 2002;12:977-9
  • McLeod R, Muench SP, Rafferty JB, Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001;31:109-13
  • Silverman JA, Hayes ML, Luft BJ, Joiner KA. Characterization of anti-toxoplasma activity of SDZ 215-918, a cyclosporin derivative lacking immunosuppressive and peptidyl-prolyl-isomerase-inhibiting activity: possible role of a P glycoprotein in toxoplasma physiology. Antimicrob Agents Chemother 1997;41:1859-66
  • el Kouni MH, Naguib FN, Panzica RP, Effects of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 1996;51:1687-700
  • Naguib FN, Iltzsch MH, el Kouni MM, Structure-activity relationships for the binding of ligands to xanthine or guanine phosphoribosyl-transferase from Toxoplasma gondii. Biochem Pharmacol 1995;50:1685-93
  • Peng ZY, Mansour JM, Araujo F, Some phosphonic acid analogs as inhibitors of pyrophosphate-dependent phosphofructokinase, a novel target in Toxoplasma gondii. Biochem Pharmacol 1995;49:105-13
  • Iltzsch MH, Tankersley KO. Structure-activity relationship of ligands of uracil phosphoribosyltransferase from Toxoplasma gondii. Biochem Pharmacol 1994;48:781-92
  • Yadav R, Pathak PP, Shukla VK, Solution structure and dynamics of ADF from Toxoplasma gondii. J Struct Biol 2011;176:97-111
  • Cook WJ, DeLucas LJ, Chattopadhyay D. Crystal structure of adenosine kinase from Toxoplasma gondii at 1.8 A resolution. Protein Sci 2000;9:704-12
  • Crawford J, Tonkin ML, Grujic O, Boulanger MJ. Structural characterization of apical membrane antigen 1 (AMA1) from Toxoplasma gondii. J Biol Chem 2010;285:15644-52
  • Crawford J, Grujic O, Bruic E, Structural characterization of the bradyzoite surface antigen (BSR4) from Toxoplasma gondii, a unique addition to the surface antigen glycoprotein 1-related superfamily. J Biol Chem 2009;284:9192-8
  • Wernimont AK, Artz JD, Finerty P Jr, Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat Struct Mol Biol 2010;17:596-601
  • Jaffe EK, Shanmugam D, Gardberg A, Crystal structure of toxoplasma gondii porphobilinogen synthase: insights on octameric structure and porphobilinogen formation. J Biol Chem 2011;286:15298-307
  • Muench SP, Prigge ST, McLeod R, Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents. Acta Crystallogr D Biol Crystallogr 2007;63(Pt 3):328-38
  • Schumacher MA, Carter D, Roos DS, Crystal structures of Toxoplasma gondii HGXPRTase reveal the catalytic role of a long flexible loop. Nat Struct Biol 1996;3:881-7
  • Héroux A, White EL, Ross LJ, Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: the structural basis for catalysis. Structure 2000;8:1309-18
  • Kucera K, Koblansky AA, Saunders LP, Structure-based analysis of Toxoplasma gondii profilin: a parasite-specific motif is required for recognition by toll-like receptor 11. J Mol Biol 2010;403:616-29
  • Kavanagh KL, Elling RA, Wilson DK. Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use. Biochemistry 2004;43:879-89
  • Graille M, Stura EA, Bossus M, Crystal structure of the complex between the monomeric form of Toxoplasma gondii surface antigen 1 (SAG1) and a monoclonal antibody that mimics the human immune response. J Mol Biol 2005;354:447-58
  • He XL, Grigg ME, Boothroyd JC, Garcia KC. Structure of the immunodominant surface antigen from the Toxoplasma gondii SRS superfamily. Nat Struct Biol 2002;9:606-11
  • Saouros S, Edwards-Jones B, Reiss M, A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. J Biol Chem 2005;280:38583-91
  • Sawmynaden K, Saouros S, Friedrich N, Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition. EMBO Rep 2008;9:1149-55
  • Marchant J, Cowper B, Liu Y, Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 2012;287:16720-33
  • Tonkin ML, Grujic O, Pearce M, Structure of the micronemal protein 2 A/I domain from Toxoplasma gondii. Protein Sci 2010;19:1985-90
  • Krug U, Zebisch M, Krauss M, Sträter N. Structural insight into activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolases by disulfide reduction. J Biol Chem 2012;287:3051-66
  • Almo SC, Bonanno JB, Sauder JM, Structural genomics of protein phosphatases. J Struct Funct Genomics 2007;8:121-40
  • Cameron S, Fyffe SA, Goldie S, Hunter WN. Crystal structures of Toxoplasma gondii pterin-4a-carbinolamine dehydratase and comparisons with mammalian and parasite orthologues. Mol Biochem Parasitol 2008;158:131-8
  • Bakszt R, Wernimont A, Allali-Hassani A, The crystal structure of Toxoplasma gondii pyruvate kinase 1. PLoS One 2010;5:e12736
  • Qiu W, Wernimont A, Tang K, Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii. EMBO J 2009;28:969-79
  • Labesse G, Gelin M, Bessin Y, ROP2 from Toxoplasma gondii: a virulence factor with a protein-kinase fold and no enzymatic activity. Structure 2009;17:139-46
  • Reese ML, Boothroyd JC. A conserved non-canonical motif in the pseudoactive site of the ROP5 pseudokinase domain mediates its effect on toxoplasma virulence. J Biol Chem 2011;286:29366-75
  • Crawford J, Lamb E, Wasmuth J, Structural and functional characterization of SporoSAG: a SAG2-related surface antigen from Toxoplasma gondii. J Biol Chem 2010;285:12063-70
  • Vedadi M, Lew J, Artz J, Genome-scale protein expression and structural biology of Plasmodium falciparum and related apicomplexan organisms. Mol Biochem Parasitol 2007;151:100-10
  • Lee SH, Hayes DB, Rebowski G, Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer. Proc Natl Acad Sci USA 2007;104:16122-7
  • Schumacher MA, Carter D, Scott DM, Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J 1998;17:3219-32
  • RCSB Protein Data Bank. Available from: http://www.rcsb.org/pdb/home/home.do

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.