701
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Riboswitch-based antibacterial drug discovery using high-throughput screening methods

&
Pages 65-82 | Published online: 20 Nov 2012

Bibliography

  • Theuretzbacher U, Toney JH. Nature's clarion call of antibacterial resistance: are we listening? Curr Opin Investig Drugs 2006;7:158-66
  • Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol 2006;24:1558-64
  • Deigan KE, Ferre-D'Amare AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 2011;44:1329-38
  • Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol 2005;15:342-8
  • Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004;5:451-63
  • Penchovsky R, Breaker RR. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol 2005;23:1424-33
  • Penchovsky R. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics. ACS Synthetic Biol 2012;1(10):471-82
  • Isaacs FJ, Dwyer DJ, Collins JJ. RNA synthetic biology. Nat Biotechnol 2006;24:545-54
  • Penchovsky R. Engineering gene control circuits with allosteric ribozymes in human cells as a medicine of the future. Quality assurance in healthcare service delivery, nursing and personalized medicine: technologies and processes. 2012; DOI: 10.4018/978-1-61350-120-7.ch005, 71-92
  • Otani S, Takatsu M, Nakano M, Letter: roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 1974;27:86-7
  • Ramesh A, Winkler WC. Magnesium-sensing riboswitches in bacteria. RNA Biol 2010;7:77-83
  • Baker JL, Sudarsan N, Weinberg Z, Widespread genetic switches and toxicity resistance proteins for fluoride. Science 2012;335:233-5
  • Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007;447:497-500
  • Wachter A, Tunc-Ozdemir M, Grove BC, Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs. Plant Cell 2007;19:3437-50
  • Bocobza S, Adato A, Mandel T, Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 2007;21:2874-9
  • Breaker RR. Complex riboswitches. Science 2008;319:1795-7
  • Mandal M, Lee M, Barrick JE, A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004;306:275-9
  • Loh E, Dussurget O, Gripenland J, A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009;139:770-9
  • Bastet L, Dube A, Masse E, Lafontaine DA. New insights into riboswitch regulation mechanisms. Mol Microbiol 2011;80:1148-54
  • Kazanov MD, Vitreschak AG, Gelfand MS. Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics 2007;8:347
  • Joyce GF. Forty years of in vitro evolution. Angew Chem Int Ed Engl 2007;46:6420-36
  • Famulok M, Mayer G. Chemical biology: aptamers in nanoland. Nature 2006;439:666-9
  • Winkler WC, Breaker RR. Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 2005;59:487-517
  • Zhang J, Lau MW, Ferre-D'Amare AR. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 2010;49:9123-31
  • Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004;11:29-35
  • Hollands K, Proshkin S, Sklyarova S, Riboswitch control of Rho-dependent transcription termination. Proc Natl Acad Sci USA 2012;109:5376-81
  • Winkler WC, Nahvi A, Roth A, Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004;428:281-6
  • Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 2002;99:15908-13
  • Gelfand MS, Mironov AA, Jomantas J, A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 1999;15:439-42
  • Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009;6:187-94
  • Mansjo M, Johansson J. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 2011;8:674-80
  • Blount K, Puskarz I, Penchovsky R, Breaker R. Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol 2006;3:77-81
  • Klein DJ, Ferre-D'Amare AR. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 2006;313:1752-6
  • Klein DJ, Wilkinson SR, Been MD, Ferre-D'Amare AR. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. J Mol Biol 2007;373:178-89
  • Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 2009;6:276-80
  • Lu Y, Chen NY, Paulus H. Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J Gen Microbiol 1991;137:1135-43
  • Blount KF, Wang JX, Lim J, Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 2007;3:44-9
  • Sudarsan N, Wickiser JK, Nakamura S, An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003;17:2688-97
  • Di Girolamo A, Di Girolamo M, Cini C, Thialysine utilization by thialysine resistant CHO cells. Physiol Chem Phys Med NMR 1986;18:33-6
  • Sudarsan N, Cohen-Chalamish S, Nakamura S, Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005;12:1325-35
  • Robbins WJ. The pyridine analog of thiamin and the growth of fungi. Proc Natl Acad Sci USA 1941;27:419-22
  • Iwashima A, Wakabayashi Y, Nose Y. Formation of pyrithiamine pyrophosphate in brain tissue. J Biochem 1976;79:845-7
  • Thore S, Frick C, Ban N. Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. J Am Chem Soc 2008;130:8116-17
  • Edwards TE, Ferre-D'Amare AR. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 2006;14:1459-68
  • Thomas JR, Hergenrother PJ. Targeting RNA with small molecules. Chem Rev 2008;108:1171-224
  • Lunse CE, Schmidt MS, Wittmann V, Mayer G. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 2011;6:675-8
  • Mayer G, Famulok M. High-throughput-compatible assay for glmS riboswitch metabolite dependence. ChemBioChem 2006;7:602-4
  • Penchovsky R. Computational design and experimental validation of small molecule-sensing allosteric ribozymes. under review
  • Scott WG. Crystallographic analyses of chemically synthesized modified hammerhead RNA sequences as a general approach toward understanding ribozyme structure and function. Methods Mol Biol 1997;74:387-91
  • Wang JY, Qiu L, Drlica K. Hammerhead ribozyme structure probed by cell extracts. Gene 1996;181:117-20
  • Flores R, Hernandez C, de la Pena M, Hammerhead ribozyme structure and function in plant RNA replication. Methods Enzymol 2001;341:540-52
  • Penchovsky R. High-throughput compatible beads-based array for transcription termination of FMN riboswitch. Under review
  • Wickiser JK, Winkler WC, Breaker RR, Crothers DM. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 2005;18:49-60
  • Penchovsky R, Birch-Hirschfeld E, McCaskill JS. End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads. Nucleic Acids Res 2000;28:E98
  • Kim JN, Blount KF, Puskarz I, Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 2009;4:915-27
  • Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 2011;18:359-63
  • Anderson PC, Mecozzi S. Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline. J Am Chem Soc 2005;127:5290-1
  • Subramaniam S, Mehrotra M, Gupta D. Virtual high throughput screening (vHTS)–a perspective. Bioinformation 2008;3:14-17
  • Cheatham TE III, Young MA. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers 2000;56:232-56
  • Rabinowitz JR, Goldsmith MR, Little SB, Pasquinelli MA. Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ Health Perspect 2008;116:573-7
  • Lang PT, Brozell SR, Mukherjee S, DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 2009;15:1219-30
  • Sutcliffe JA. Improving on nature: antibiotics that target the ribosome. Curr Opin Microbiol 2005;8:534-42
  • Blount KF, Zhao F, Hermann T, Tor Y. Conformational constraint as a means for understanding RNA-aminoglycoside specificity. J Am Chem Soc 2005;127:9818-29
  • Faber C, Sticht H, Schweimer K, Rosch P. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J Biol Chem 2000;275:20660-6
  • Kirk SR, Tor Y. tRNA(Phe) binds aminoglycoside antibiotics. Bioorg Med Chem 1999;7:1979-91
  • Kirk SR, Luedtke NW, Tor Y. 2-Aminopurine as a real-time probe of enzymatic cleavage and inhibition of hammerhead ribozymes. Bioorg Med Chem 2001;9:2295-301
  • Kumar S, Arya DP. Recognition of HIV TAR RNA by triazole linked neomycin dimers. Bioorg Med Chem Lett 2011;21:4788-92
  • Ataide SF, Wilson SN, Dang S, Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007;2:819-27
  • Koedam JC. The mode of action of pyrithiamine as an inductor of thiamine deficiency. Biochim Biophys Acta 1958;29:333-44
  • Serganov A, Polonskaia A, Phan AT, Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 2006;441:1167-71
  • Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 2006;312:1208-11
  • Mandal M, Boese B, Barrick JE, Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003;113:577-86
  • Haas AL, Laun NP, Begley TP. Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. Bioorg Chem 2005;33:338-44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.