421
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in proteasome inhibitor discovery

, , , &
Pages 537-568 | Published online: 02 Apr 2013

Bibliography

  • Rubin DM, Finley D. The proteasome: a protein-degrading organelle? Curr Biol 1995;5:854-4
  • Baumeister W, Walz J, Proteolysis C. The proteasome: paradigm review of a self-compartmentalizing protease. Cell 1998;92:367-80
  • Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 2000;22(5):442-51
  • Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006;22:159-80
  • Elsasser S, Gali RR, Schwickart M, Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 2002;4(9):725-30
  • Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004;5(3):177-87
  • Groll M, Ditzel L, Löwe J, Structure of 20S proteasome from yeast at 2.4 A resolution. Nature (London) 1997;386(6624):463-71
  • Borissenko L, Groll M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 2007;107(3):687-717
  • Tsvetkov L, Nanjundan M, Domino M, Daniel KG. The ubiquitin-proteasome system and assays to determine responses to inhibitors. Expert Opin Drug Discov 2010;5(12):1221-36
  • Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 2012;19(1):99-115
  • Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004;16(1):76-81
  • Murata S, Takahama Y, Tanaka K. Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 2008;20(2):192-6
  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005;23(3):630-9
  • An W, Hwang S, Trepel J, Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000;14(7):1276
  • Almond J, Cohen G, The proteasome: a novel target for cancer chemotherapy. Leukemia 2002;16(4):433
  • Paul S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 2008;30(11-12):1172-84
  • Willis MS, Townley-Tilson WHD, Kang EY, Sent to destroy the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res 2010;106(3):463-78
  • Yu X, Kem DC. Proteasome inhibition during myocardial infarction. Cardiovasc Res 2010;85(2):312-20
  • Flechner SM, Fatica R, Askar M, The role of proteasome inhibition with bortezomib in the treatment of antibody-mediated rejection after kidney-only or kidney-combined organ transplantation. Transplantation 2010;90(12):1486
  • Gante J. Peptidomimeticstailored enzyme inhibitors. Angew Chem Int Ed Engl 1994;33(17):1699-720
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8(8):739-58
  • Food US, Administration D. About the Center for Drug Evaluation and Research – Velcade (bortezomib) is Approved for Initial Treatment of Patients with Multiple Myeloma. 2009. Available from: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm094633.htm
  • Food US, Administration D. About the Center for Drug Evaluation and Research – FDA approves bortezomib (Velcade) for the treatment of patients with mantle cell lymphoma who have received at least one prior therapy. 2009. Available from: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm094929.htm
  • Mujtaba T, Dou Q. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med 2011;12(67):471-80
  • Adams J, Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 2003;8(7):307
  • Zhu Y, Zhao X, Zhu X, Design, synthesis, biological evaluation, and structure-activity relationship (SAR) discussion of dipeptidyl boronate proteasome inhibitors, part I: comprehensive understanding of the SAR of α-amino acid boronates. J Med Chem 2009;52(14):4192-9
  • Food US, Administration D. Approved Drugs – Carfilzomib. 2012. Available from: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm312945.htm
  • Fostier K, De Becker A, Schots R. Carfilzomib: a novel treatment in relapsed and refractory multiple myeloma. Onco Targets Ther 2012;5:237
  • McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 2008;11(4):164-79
  • Walters WP, Stahl MT, Murcko MA. Virtual screening-an overview. Drug Discov Today 1998;3(4):160-78
  • Shoichet BK. Virtual screening of chemical libraries. Nature;2004;432(7019):862-5
  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3(11):935-49
  • NCI/NIH DTP. DTP – Diversity Set Information. Available from: http://dtp.nci.nih.gov/branches/dscb/diversity.html
  • Daniel KG, Gupta P, Harbach RH, Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol 2004;67(6):1139-51
  • Lavelin I, Beer A, Kam Z, Discovery of novel proteasome inhibitors using a high-content cell-based screening system. PLoS One 2009;4(12):e8503
  • Lawrence HR, Kazi A, Luo Y, Synthesis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors. Bioorg Med Chem 2010;18(15):5576-92
  • Ge Y, Kazi A, Marsilio F, Discovery and synthesis of hydronaphthoquinones as novel proteasome inhibitors. J Med Chem 2012;55(5):1978-98
  • Xu K, Xiao Z, Tang YB, Design and synthesis of naphthoquinone derivatives as antiproliferative agents and 20S proteasome inhibitors. Bioorg Med Chem Lett 2012;22(8):2772-4
  • Demasi M, Felicio A, Pacheco A, Studies on terrein as a new class of proteasome inhibitors. J Braz Chem Soc 2010;21(2):299-305
  • Blackburn C, Gigstad KM, Hales P, Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem J 2010;430(Pt 3):461
  • Ausseil F, Samson A, Aussagues Y, High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources. J Biomol Screen 2007;12(1):106-16
  • Long C, Beck J, Cantagrel F, Proteasome Inhibitors from Neoboutonia melleri. J Nat Prod 2011;75(1):34-47
  • Basse N, Montes M, Marechal X, Novel organic proteasome inhibitors identified by virtual and in vitro screening. J Med Chem 2009;53(1):509-13
  • Gallastegui N, Beck P, Arciniega M, Hydroxyureas as noncovalent proteasome inhibitors. Angew Chem Int Ed 2012;51(1):247-9
  • Zhu Y, Yao S, Xu B, Design, synthesis and biological evaluation of tripeptide boronic acid proteasome inhibitors. Bioorg Med Chem 2009;17(19):6851-61
  • Zhu Y, Zhu X, Wu G, Synthesis, in vitro and in vivo biological evaluation, docking studies, and structure-activity relationship (SAR) discussion of dipeptidyl boronic acid proteasome inhibitors composed of beta-amino acids. J Med Chem 2010;53(5):1990-9
  • Zhu Y, Wu G, Zhu X, Synthesis, in vitro and in vivo biological evaluation, and comprehensive understanding of structure–activity relationships of dipeptidyl boronic acid proteasome inhibitors constructed from beta-amino acids. J Med Chem 2010;53:8619-26
  • Momose I, Sekizawa R, Hashizume H, Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. I. Taxonomy, isolation, physico-chemical properties and biological activities. J Antibiot 2001;54(12):997-1003
  • Momose I, Sekizawa R, Hirosawa S, Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. II. Structure determination and synthesis. J Antibiot 2001;54(12):1004-12
  • Watanabe T, Momose I, Abe M, Synthesis of boronic acid derivatives of tyropeptin: proteasome inhibitors. Bioorg Med Chem Lett 2009;19(8):2343-5
  • Watanabe T, Abe H, Momose I, Structure-activity relationship of boronic acid derivatives of tyropeptin: Proteasome inhibitors. Bioorg Med Chem Lett 2010;20(19):5839-42
  • Asai A, Hasegawa A, Ochiai K, Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by Streptomyces sp. ChemInform 2000;31:24
  • Asai A, Tsujita T, Sharma SV, A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay. Biochem Pharmacol 2004;67(2):227-34
  • Nakamura H, Watanabe M, Ban HS, Synthesis and biological evaluation of boron peptide analogues of Belactosin C as proteasome inhibitors. Bioorg Med Chem Lett 2009;19(12):3220-4
  • Lei M, Zhao X, Wang Z, Zhu Y. Pharmacophore modeling, docking studies, and synthesis of novel dipeptide proteasome inhibitors containing boron atoms. J Chem Inf Model 2009;49(9):2092-100
  • Iqbal M, Messina McLaughlin PA, Dunn D, Proteasome inhibitors for cancer therapy. Bioorg Med Chem 2012;20:2362-68
  • Dorsey BD, Iqbal M, Chatterjee S, Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J Med Chem 2008;51(4):1068-72
  • Bégué JP, Bonnet-Delpon D. Recent advances (1995-2005) in fluorinated pharmaceuticals based on natural products. J fluorine Chem 2006;127(8):992-1012
  • Hagmann WK. The many roles for fluorine in medicinal chemistry. ChemInform 2008;39:45
  • Isanbor C, OHagan D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluorine Chem 2006;127(3):303-19
  • Begue JP, Bonnet-Delpon D. Wiley Online Library; 2007
  • Padhye S, Yang H, Jamadar A, New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 2009;26(8):1874-80
  • Kirk KL. Selective fluorination in drug design and development: an overview of biochemical rationales. Curr Top Med Chem 2006;6(14):1447-56
  • Böhm HJ, Banner D, Bendels S, Fluorine in medicinal chemistry. ChemBioChem 2004;5(5):637-43
  • Formicola L, Maréchal X, Basse N, Novel fluorinated pseudopeptides as proteasome inhibitors. Bioorg Med Chem Lett 2009;19(1):83-6
  • Abas F, Lajis NH, Shaari K, A labdane diterpene glucoside from the rhizomes of curcuma mangga. J Nat Prod 2005;68(7):1090-3
  • Bisht S, Feldmann G, Soni S, Polymeric nanoparticle-encapsulated curcumin (nanocurcumin): a novel strategy for human cancer therapy. J Nanobiotechnology 2007;5(3):1-18
  • Jagetia GC, Rajanikant G. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of γ-radiation. J Surg Res 2004;120(1):127-38
  • Milacic V, Banerjee S, Landis-Piwowar KR, Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 2008;68(18):7283-92
  • Geurink PP, Liu N, Spaans MP, Incorporation of fluorinated phenylalanine generates highly specific inhibitor of proteasomes chymotrypsin-like sites. J Med Chem 2010;53(5):2319-23
  • Löwe J, Stock D, Jap B, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science (New York, NY). 1995;268(5210):533
  • Vinitsky A, Michaud C, Powers JC, Orlowski M. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 1992;31(39):9421-8
  • Momose I, Umezawa Y, Hirosawa S, Structure-based design of derivatives of tyropeptin A as the potent and selective inhibitors of mammalian 20S proteasome. Bioorg Med Chem Lett 2005;15(7):1867-71
  • Loidl G, Groll M, Musiol HJ, Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 1999;6(4):197-204
  • Ma Y, Chen B, Liu D, MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway. Biochem Pharmacol 2011;81(10):1228-36
  • Donkor I. A survey of calpain inhibitors. Curr Med Chem 2000;7(12):1171-88
  • Tsubuki S, Saito Y, Tomioka M, Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem 1996;119(3):572-6
  • Sherwood SW, Kung AL, Roitelman J, In vivo inhibition of cyclin B degradation and induction of cell-cycle arrest in mammalian cells by the neutral cysteine protease inhibitor N-acetylleucylleucylnorleucinal. Proc Natl Acad Sci 1993;90(8):3353-7
  • Jüllig M, Zhang W, Ferreira A, Stott N. MG132 induced apoptosis is associated with p53-independent induction of pro-apoptotic Noxa and transcriptional activity of beta-catenin. Apoptosis 2006;11(4):627-41
  • Han YH, Moon HJ, You BR, Park WH. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep 2009;22(1):215-21
  • Ma Y, Xu B, Fang Y, Synthesis and SAR study of novel peptide aldehydes as inhibitors of 20S proteasome. Molecules 2011;16(9):7551-64
  • Ettari R, Bonaccorso C, Micale N, Development of novel peptidomimetics containing a vinyl sulfone moiety as proteasome inhibitors. ChemMedChem 2011;6(7):1228-37
  • Vivier M, Rapp M, Galmier MJ, New aldehyde and vinylsulfone proteasome inhibitors for targeted melanoma therapy. Eur J Med Chem 2011;46(11):5705-10
  • Screen M, Britton M, Downey SL, Nature of pharmacophore influences active site specificity of proteasome inhibitors. J Biol Chem 2010;285(51):40125-34
  • Baldisserotto A, Marastoni M, Gavioli R, Tomatis R. New cyclic peptide proteasome inhibitors. Bioorg Med Chem Lett 2009;19(7):1966-9
  • Chen W, Mou K, Xu B, Capillary electrophoresis for screening of 20S proteasome inhibitors. Anal Biochem 2009;394(1):62-7
  • García-Echeverría C. Peptide and peptide-like modulators of 20S proteasome enzymatic activity in cancer cells. Int J Pept Res Ther 2006;12(1):49-64
  • Powers JC, Asgian JL, Ekici OD, Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002;102(12):4639-750
  • Baldisserotto A, Franceschini C, Scalambra F, Synthesis and proteasome inhibition of N-allyl vinyl ester-based peptides. J Pept Sci 2010;16(11):659-63
  • Demo SD, Kirk CJ, Aujay MA, Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007;67(13):6383-91
  • Bennett M, Kirk C, Development of proteasome inhibitors in oncology and autoimmune diseases. Curr Opin Drug Discov Dev 2008;11(5):616
  • Kuhn DJ, Chen Q, Voorhees PM, Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007;110(9):3281-90
  • Oconnor O, Orlowski R, Alsina M, Multicenter phase I studies to evaluate the safety, tolerability, and clinical response to intensive dosing with the proteasome inhibitor PR-171 in patients with relapsed or refractory hematological malignancies. Blood 2006;108(11):687A-8A
  • Stapnes C, Døskeland AP, Hatfield K, The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 2007;136(6):814-28
  • Orlowski R, Stewart K, Vallone M, Safety and antitumor efficacy of the proteasome inhibitor carfilzomib (PR-171) dosed for five consecutive days in hematologic malignancies: phase 1 results. BLOOD-New York 2007;110(11):409
  • Alsina M, Trudel S, Vallone M, Phase 1 single agent antitumor activity of twice weekly consecutive day dosing of the proteasome inhibitor carfilzomib (PR-171) in hematologic malignancies. Blood (New York) 2007;110(11):411
  • Zhou HJ, Aujay MA, Bennett MK, Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 2009;52(9):3028-38
  • Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 2005;7(9):1379-91
  • Oka M, Nishiyama Y, Ohta S, Glidobactins A, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity. J Antibiot (Tokyo) 1988;41(10):1331
  • Clerc J, Groll M, Illich DJ, Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Nat Acad Sci 2009;106(16):6507-12
  • Clerc J, Schellenberg B, Groll M, Convergent synthesis and biological evaluation of syringolin A and derivatives as eukaryotic 20S proteasome inhibitors. Eur J Org Chem 2010;2010(21):3991-4003
  • Archer CR, Groll M, Stein ML, Activity enhancement of synthetic syrbactin proteasome inhibitor hybrid and biological evaluation in tumor cells. Biochemistry 2012;51(34):6880-8
  • van der Linden WA, Willems LI, Shabaneh TB, Discovery of a potent and highly β1 specific proteasome inhibitor from a focused library of urea-containing peptide vinyl sulfones and peptide epoxyketones. Org Biomol Chem 2012;10(1):181-94
  • Coleman C, Rocetes J, Park D, Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif 2006;39(6):599-609
  • Groll M, Schellenberg B, Bachmann AS, A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008;452(7188):755-8
  • Clerc J, Li N, Krahn D, The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity. Chem Commun 2011;47(1):385-7
  • Bonfili L, Cecarini V, Amici M, Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 2008;275(22):5512-26
  • Chen D, Chen MS, Cui QC, Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci 2007;12:1935-45
  • Chen D, Daniel KG, Chen MS, Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 2005;69(10):1421-32
  • Chang TL. Inhibitory effect of flavonoids on 26S proteasome activity. J Agric Food Chem 2009;57(20):9706-15
  • Shim SH. 20S proteasome inhibitory activity of flavonoids isolated from Spatholobus suberectus. Phytother Res 2011;25(4):615-18
  • Guo S, Lu J, Subramanian A, Sonenshein GE. Microarray-assisted pathway analysis identifies mitogen-activated protein kinase signaling as a mediator of resistance to the green tea polyphenol epigallocatechin 3-gallate in her-2/neu-overexpressing breast cancer cells. Cancer Res 2006;66(10):5322-9
  • Sun CL, Yuan JM, Koh WP, Mimi CY. Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 2006;27(7):1310-15
  • Sartippour MR, Heber D, Ma J, Green tea and its catechins inhibit breast cancer xenografts. Nutr Cancer 2001;40(2):149-56
  • Landau JM, Wang ZY, Yang GY, Inhibition of spontaneous formation of lung tumors and rhabdomyosarcomas in A/J mice by black and green tea. Carcinogenesis 1998;19(3):501-7
  • Horie N, Hirabayashi N, Takahashi Y, Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol Pharm Bull 2005;28(4):574-9
  • Bettuzzi S, Brausi M, Rizzi F, Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 2006;66(2):1234-40
  • Kemberling J, Hampton JA, Keck RW, Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol 2003;170(3):773-6
  • Smith DM, Daniel KG, Wang Z, Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design. Proteins 2003;54(1):58-70
  • Nam S, Smith DM, Dou QP. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 2001;276(16):13322-30
  • Okushio K, Suzuki M, Matsumoto N, Methylation of tea catechins by rat liver homogenates. Biosci Biotechnol Biochem 1999;63(2):430-2
  • Lu H, Meng X, Yang CS. Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 2003;31(5):572-9
  • Huo C, Yang H, Cui QC, Proteasome inhibition in human breast cancer cells with high catechol-O-methyltransferase activity by green tea polyphenol EGCG analogs. Bioorg Med Chem 2010;18(3):1252-8
  • Daniel KG, Landis-Piwowar KR, Chen D, Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit. Int J Mol Med 2006;18(4):625
  • Kanwar J, Mohammad I, Yang H, Computational modeling of the potential interactions of the proteasome β5 subunit and catechol-O-methyltransferase-resistant EGCG analogs. Int J Mol Med 2010;26(2):209
  • Bonfili L, Cuccioloni M, Mozzicafreddo M, Identification of an EGCG oxidation derivative with proteasome modulatory activity. Biochimie 2011;93(5):931-40
  • Feling RH, Buchanan GO, Mincer TJ, Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 2003;42(3):355-7
  • Fenical W, Jensen PR, Palladino MA, Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 2009;17(6):2175-80
  • Lam KS, Lloyd GK, Neuteboom STC, From natural product to clinical trials: NPI-0052 (salinosporamide A), a marine actinomycete-derived anticancer agent. In: Buss AD, Butler MS, editors, Natural products chemistry for drug discovery. 1st edition. Royal Publishing, Cambridge, UK; 2009
  • Nguyen H, Ma G, Gladysheva T, Bioinspired total Synthesis and human proteasome inhibitory activity of (-)-salinosporamide A,(-)-homosalinosporamide A, and derivatives obtained via organonucleophile promoted bis-cyclizations. J Org Chem 2011;76(1):2
  • Rachid S, Huo L, Herrmann J, Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. Chembiochem 2011;12(6):922-31
  • Sallam AA, Ramasahayam S, Meyer SA, Sayed KAE. Design, synthesis, and biological evaluation of dibromotyrosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation, invasion, and migration. Bioorg Med Chem 2010;18(21):7446-57
  • Mudit M, Khanfar M, Muralidharan A, Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorg Med Chem 2009;17(4):1731-8
  • Koguchi Y, Kohno J, Nishio M, TMC-95A, B, C, and D, novel proteasome inhibitors produced by apiospora montagnei sacc. TC 1093. Taxonomy, production, isolation, and biological activities. Chem Inform 2000;31(26):no-o
  • Groll M, Koguchi Y, Huber R, Kohno J. Crystal structure of the 20 S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 2001;311(3):543-8
  • Lin S, Danishefsky SJ. The total synthesis of proteasome inhibitors TMC-95A and TMC-95B: discovery of a new method to generate cis-propenyl amides. Angew Chem Int Ed 2002;41(3):512-15
  • Inoue M, Sakazaki H, Furuyama H, Hirama M. Total Synthesis of TMC-95A. Angew Chem Int Ed 2003;42(23):2654-7
  • Albrecht BK, Williams RM. A concise, total synthesis of the TMC-95A/B proteasome inhibitors. Proc Nat Acad Sci USA 2004;101(33):11949-54
  • Kaiser M, Groll M, Renner C, The core structure of TMC-95A Is a promising lead for reversible proteasome inhibition. Angew Chem Int Ed 2002;41(5):780-3
  • Lin S, Danishefsky SJ. Synthesis of the functionalized macrocyclic core of proteasome inhibitors TMC-95A and B. Angew Chemie Int Ed 2001;40(10):1967-70
  • Berthelot A, Piguel S, Le Dour G, Vidal J. Synthesis of macrocyclic peptide analogues of proteasome inhibitor TMC-95A. J Org Chem 2003;68(25):9835-8
  • Groll M, Gallastegui N, Maréchal X, 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. Chem Med Chem 2010;5(10):1701-5
  • Basse N, Piguel S, Papapostolou D, Linear TMC-95-based proteasome inhibitors. J Med Chem 2007;50(12):2842-50
  • Maréchal X, Pujol A, Richy N, Noncovalent inhibition of 20S proteasome by pegylated dimerized inhibitors. Eur J Med Chem 2012;52:322-7
  • Milacic V, Chen D, Ronconi L, A novel anticancer gold (III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S protea some in human breast cancer cell cultures and xenografts. Cancer Res 2006;66(21):10478-86
  • Milacic V, Dou QP. The tumor proteasome as a novel target for gold (III) complexes: implications for breast cancer therapy. Coord Chem Rev 2009;253(11):1649-60
  • Cvek B, Milacic V, Taraba J, Dou QP. Ni (II), Cu (II), and Zn (II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J Med Chem 2008;51(20):6256-8
  • Frezza M, Hindo SS, Tomco D, Comparative activities of nickel (II) and zinc (II) complexes of asymmetric [NN O] ligands as 26S proteasome inhibitors. Inorg Chem 2009;48(13):5928-37
  • Daniel KG, Chen D, Orlu S, Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 2005;7(6):R897-908
  • Milacic V, Jiao P, Zhang B, Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells. Int J Oncol 2009;35(6):1481-91
  • Hindo SS, Frezza M, Tomco D, Metals in anticancer therapy: copper (II) complexes as inhibitors of the 20S proteasome. Eur J Med Chem 2009;44(11):4353-61
  • Zuo J, Bi C, Fan Y, Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid schiff base-copper complexes. J Inorg Biochem 2013;118:83-93
  • Rackham O, Nichols SJ, Leedman PJ, A gold (I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem Pharmacol 2007;74(7):992-1002
  • Geraki K, Farquharson M, Bradley D. Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study. Phys Med Biol 2002;47(13):2327
  • Nayak SB, Bhat VR, Upadhyay D, Udupa SL. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol 2003;47(1):108-10
  • Diez M, Arroyo M, Cerdan F, Serum and tissue trace metal levels in lung cancer. Oncology 1989;46(4):230-4
  • Yoshida D, Ikeda Y, Nakazawa S. Quantitative analysis of copper, zinc and copper/zinc ratio in selected human brain tumors. J Neurooncol 1993;16(2):109-15
  • Schoof S, Pradel G, Aminake MN, Antiplasmodial thiostrepton derivatives: proteasome inhibitors with a dual mode of action. Angew Chem Int Ed 2010;49(19):3317-21
  • Kashiwada Y, Hashimoto F, Cosentino LM, Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J Med Chem 1996;39(5):1016
  • Dogra N, Mukhopadhyay T. Impairment of the ubiquitin-proteasome pathway by methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl) carbamate leads to a potent cytotoxic effect in tumor cells A novel antiproliferative agent with a potential therapeutic implication. J Biol Chem 2012;287(36):30625-40
  • Santoro AM, Lo Giudice MC, Durso A, Cationic porphyrins are reversible proteasome inhibitors. J Am Chem Soc 2012;134(25):10451-7
  • Schlitzer M. Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. Chem Med Chem 2007;2(7):944-86
  • Nesbitt G, Fox P. Clinical evaluation of Panolog Cream used to treat canine and feline dermatoses. Vet Med Small Anim Clin 1981;76(4):535
  • McConkey GA, Rogers MJ, McCutchan TF. Inhibition of Plasmodium falciparum protein synthesis. J Biol Chem 1997;272(4):2046-9
  • Schmidtke G, Holzhütter HG, Bogyo M, How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem 1999;274(50):35734-40
  • Kanamoto T, Kashiwada Y, Kanbara K, Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother 2001;45(4):1225-30
  • Qian K, Kim SY, Hung HY, New betulinic acid derivatives as potent proteasome inhibitors. Bioorg Med Chem Lett 2011;21(19):5944-7
  • Eckert J, Conraths F, Tackmann K, Echinococcosis: an emerging or re-emerging zoonosis? Int J Parasitol 2000;30(12):1283-94
  • Ammann RW, Ilitsch N, Marincek B, Freiburghaus AU. Effect of chemotherapy on the larval mass and the long-term course of alveolar echinococcosis. Hepatology 1994;19(3):735-42
  • Müller E, Akovbiantz A, Ammann R, Treatment of human echinococcosis with mebendazole. Preliminary observations in 28 patients. Hepatogastroenterology 1982;29(6):236
  • Dougherty TJ, Henderson BW, Gomer CJ, Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889-905
  • Smith KM, Kadish KM, Guilard R. The porphyrin handbook. Elsevier, San Diego, California, USA; 1999
  • Cen D, Brayton D, Shahandeh B, Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem 2004;47(27):6914-20
  • Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 2006;66(21):10425-33
  • Conticello C, Martinetti D, Adamo L, Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 2012;31(9):2197-203
  • Oprea T, Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J 2012;14:1-5
  • Nickeleit I, Zender S, Sasse F, Argyrin A reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 2008;14(1):23-35
  • Bülow L, Nickeleit I, Girbig AK, Synthesis and biological ucharacterization of argyrin F. ChemMedChem 2010;5(6):832-6
  • Stauch B, Simon B, Basile T, Elucidation of the structure and intermolecular interactions of a reversible cyclic-peptide inhibitor of the proteasome by NMR spectroscopy and molecular modeling. Angew Chem 2010;122(23):4026-30
  • Baldisserotto A, Ferretti V, Destro F, α, β-unsaturated N-acylpyrrole peptidyl derivatives: new proteasome inhibitors. J Med Chem 2010;53(17):6511-15
  • Hatcher H, Planalp R, Cho J, Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008;65(11):1631-52
  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. Adv Exp Med Biol 2007;595:1-75
  • Landis-Piwowar KR, Milacic V, Chen D, The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 2006;9(6):263-73
  • Wan SB, Yang H, Zhou Z, Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. Int J Mol Med 2010;26(4):447
  • Krunic A, Vallat A, Mo S, Scytonemides A and B, cyclic peptides with 20S proteasome inhibitory activity from the cultured cyanobacterium Scytonema hofmanii. J Nat Prod 2010;73(11):1927
  • Huang L, Yu D, Ho P, Synthesis and proteasome inhibition of glycyrrhetinic acid derivatives. Bioorg Med Chem Lett 2008;16(14):6696-701
  • Huang L, Ho P, Chen CH. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett 2007;581(25):4955-9
  • Dang Z, Lin A, Ho P, Synthesis and proteasome inhibition of lithocholic acid derivatives. Bioorg Med Chem Lett 2011;21(7):1926-8
  • Lansdell TA, Hewlett NM, Skoumbourdis AP, Palauamine and related oroidin alkaloids dibromophakellin and dibromophakellstatin inhibit the human 20s proteasome. J Nat Prod 2012;75(5):980-5
  • Dunn D, Iqbal M, Husten J, Serendipity in discovery of proteasome inhibitors. Bioorg Med Chem Lett 2012;22:3503-5
  • Garcia-Pastor P, Randazzo A, Gomez-Paloma L, Effects of petrosaspongiolide M, a novel phospholipase A2 inhibitor, on acute and chronic inflammation. J Pharmacol Exp Ther 1999;289(1):166-72
  • Margarucci L, Monti MC, Tosco A, Chemical proteomics discloses petrosapongiolide M, an antiinflammatory marine sesterterpene, as a proteasome inhibitor. Angew Chem Int Ed 2010;49(23):3960-3
  • Margarucci L, Tosco A, De Simone R, Modulation of proteasome machinery by natural and synthetic analogues of the marine bioactive compound petrosaspongiolide m. ChemBioChem 2012;13(7):982-6
  • Kisselev AF, Goldberg AL. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 2005;398:364-78
  • Gaedicke S, Firat-Geier E, Constantiniu O, Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res 2002;62(23):6901-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.