576
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Latest advances in the discovery of fatty acid amide hydrolase inhibitors

&
Pages 509-522 | Published online: 14 Mar 2013

Bibliography

  • Bisogno T. Endogenous cannabinoids: structure and metabolism. J Neuroendocrinol 2008;20(Suppl 1):1-9
  • Muccioli GG. Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 2010;15:474-83
  • Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 2010;35:601-8
  • Min R, Di Marzo V, Mansvelder HD. DAG lipase involvement in depolarization-induced suppression of inhibition: does endocannabinoid biosynthesis always meet the demand? Neuroscientist 2010;16:608-13
  • Gasperi V, Dainese E, Oddi S, GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. Curr Med Chem 2012;
  • Bouaboula M, Hilairet S, Marchand J, Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 2005;517:174-81
  • Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 2010;17:1430-49
  • Sigel E, Baur R, Rácz I, The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci USA 2011;108:18150-5
  • Okamoto Y, Tsuboi K, Ueda N. Enzymatic formation of anandamide. Vitam Horm 2009;81:1-24
  • Leung D, Saghatelian A, Simon GM, Cravatt BF. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 2006;45:4720-6
  • Bisogno T, Howell F, Williams G, Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 2003;163:463-8
  • Gao Y, Vasilyev DV, Goncalves MB, Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 2010;30:2017-24
  • Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoide transport across cell membranes. J Biol Chem 2012;287:34660-82
  • Cravatt BF, Giang DK, Mayfield SP, Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996;384:83-7
  • Dinh TP, Carpenter D, Leslie FM, Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 2002;99:10819-24
  • Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 2008;7:438-55
  • Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 2009;8:403-21
  • Bisogno T, Di Marzo V. Short- and long-term plasticity of the endocannabinoid system in neuropsychiatric and neurological disorders. Pharmacol Res 2007;56:428-42
  • Engeli S. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight. Handb Exp Pharmacol 2012;209:357-81
  • O'Sullivan SE, Kendall PJ, Kendall DA. Endocannabinoids and the cardiovascular response to stress. J Psychopharmacol 2012;26:71-82
  • Grimaldi C, Capasso A. The endocannabinoid system in the cancer therapy: an overview. Curr Med Chem 2011;18:1575-83
  • Schicho R, Storr M. Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases. Can J Gastroenterol 2011;25:377-83
  • Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010;49:299-315
  • Fu J, Gaetani S, Oveisi F, Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003;425:90-3
  • Overton HA, Babbs AJ, Doel SM, Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167-75
  • Movahed P, Jönsson BA, Birnir B, Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 2005;280:38496-504
  • Wei BQ, Mikkelsen TS, McKinney MK, A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 2006;281:36569-78
  • Cravatt B F, Prospero-Garcia O, Siuzdak G, Chemical characterization of a family of brain lipids that induce sleep. Science 1995;268:1506-9
  • Leggett JD, Aspley S, Beckett SR, Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol 2004;141:253-62
  • McHugh D, Wager-Miller J, Page J, Bradshaw HB. siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration. J Mol Signal 2012;7:10-16
  • Huang SM, Bisogno T, Petros TJ, Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem 2001;276:42639-44
  • Milman G, Maor Y, Abu-Lafi S, N-Arachidonoyl L-serine, an endocannabinoidlike brain constituent with vasodilatory properties. Proc Natl Acad Sci USA 2006;103:2428-33
  • Saghatelian A, McKinney MK, Bandell M, A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 2006;45:9007-15
  • Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoide 2-arachidonoylglycerol. Chem Biol 2007;14:1347-56
  • Xie S, Borazjani A, Hatfield MJ, Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2. Chem Res Toxicol 2010;23:1890-904
  • Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins, Leukotrienes Essent. Fatty Acids 2002;66:211-20
  • Snider NT, Walker VJ, Hollenberg PF. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 2010;62:136-54
  • Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 2011;111:5899-921
  • van der Stelt M, van Kuik JA, Bari M, Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem 2002;45:3709-20
  • Matias I, Chen J, De Petrocellis L, Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism. J Pharmacol Exp Ther 2004;309:745-57
  • Gatta L, Piscitelli F, Giordano C, Discovery of prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLoS One 2012;7:e31111
  • Cravatt BF, Demarest K, Patricelli MP, Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 2001;98:9371-6
  • Lichtman AH, Shelton CC, Advani T, Cravatt BF. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain 2004;109:319-27
  • Massa F, Marsicano G, Hermann H, The endogenous cannabinoid system protects against colonic inflammation. J Clin Inv 2004;113:1202-9
  • Naidu PS, Varvel SA, Ahn K, Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology (Berl) 2007;192:61-70
  • Moreira FA, Kaiser N, Monory K, Lutz B. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 2008;54:141-50
  • McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 2005;74:411-32
  • Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008;49:101-32
  • Lodola A, Mor M, Hermann JC, QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem Commun 2005;11:4399-401
  • Tubert-Brohman I, Acevedo O, Jorgensen WL. Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations. J Am Chem Soc 2006;128:16904-13
  • Bracey MH, Hanson MA, Masuda KR, Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 2002;298:1793-6
  • Ahn K, Johnson DS, Fitzgerald LR, Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 2007;46:13019-30
  • Leung D, Du W, Hardouin C, Discovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: concurrent optimization of enzyme inhibitor potency and selectivity. Bioorg Med Chem Lett 2005;15:1423-8
  • Zhang D, Saraf A, Kolasa T, Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology 2007;52:1095-105
  • Wang X, Sarris K, Kage K, Synthesis and evaluation of benzothiazole-based analogues as novel, potent, and selective fatty acid amide hydrolase inhibitors. J Med Chem 2009;52:170-80
  • Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 1999;96:14694-9
  • Patricelli MP, Giang DK, Stamp LM, Burbaum JJ. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 2001;1:1067-71
  • McDonald AG, Tipton K. Enzymes: Irreversible Inhibition. In: eLS. John Wiley & Sons, Ltd, Chichester; 2012. DOI: 10.1002/9780470015902.a0000601.pub2
  • Boger DL, Sato H, Lerner AE, Trifluoromethyl ketone inhibitors of fatty acid amide hydrolase: a probe of structural and conformational features contributing to inhibition. Bioorg Med Chem Lett 1999;9:265-70
  • Boger DL, Sato H, Lerner AE, Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 2000;97:5044-9
  • Boger DL, Miyauchi H, Hedrick MP. alpha-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and alpha-substitution. Bioorg Med Chem Lett 2001;11:1517-20
  • Boger DL, Miyauchi H, Du W, Discovery of a potent, selective, and efficacious class of reversible alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics. J Med Chem 2005;48:1849-56
  • Lichtman AH, Leung D, Shelton CC, Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 2004;311:441-8
  • Chang L, Luo L, Palmer JA, Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol 2006;148:102-13
  • Kinsey SG, Long JZ, O'Neal ST, Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther 2009;330:902-10
  • Mileni M, Garfunkle J, DeMartino JK, Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by alpha-ketoheterocycle inhibitors revealed from cocrystal structures. J Am Chem Soc 2009;131:10497-506
  • Mileni M, Garfunkle J, Ezzili C, X-ray crystallographic analysis of alpha-ketoheterocycle inhibitors bound to a humanized variant of fatty acid amide hydrolase. J Med Chem 2010;53:230-40
  • Otrubova K, Boger DL. α-Ketoheterocycle-based Inhibitors of Fatty Acid Amide Hydrolase (FAAH). ACS Chem Neurosci 2012;3:340-8
  • Sit SY, Conway CM, Xie K, Oxime carbamate–discovery of a series of novel FAAH inhibitors. Bioorg Med Chem Lett 2010;20:1272-7
  • Gattinoni S, Simone CD, Dallavalle S, A new group of oxime carbamates as reversible inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 2010;20:4406-11
  • Gattinoni S, De Simone C, Dallavalle S, Enol carbamates as inhibitors of fatty acid amide hydrolase (FAAH) endowed with high selectivity for FAAH over the other targets of the endocannabinoid system. ChemMedChem 2010;5:357-60
  • Caprioli A, Coccurello R, Rapino C, The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models. J Pharmacol Exp Ther 2012;342:188-95
  • Gustin DJ, Ma Z, Min X, Identification of potent, noncovalent fatty acid amide hydrolase (FAAH) inhibitors. Bioorg Med Chem Lett 2011;21:2492-6
  • Minkilla A, Saario SM, Kasnanen H, Discovery of boronic acids as novel and potent inhibitors of fatty acid amide hydrolase. Med Chem 2008;51:7057-60
  • Adams J, Behnke ML, Castro AC, Preparation of arylboronates as inhibitors of fatty acid amide hydrolase. WO2008063300; 2008
  • Dembitsky VM, Quntar AA, Srebnik M. Recent advances in the medicinal chemistry of alphaaminoboronic acids, amine-carboxyboranes and their derivatives. Mini Rev Med Chem 2004;4:1001-18
  • Tian G, Paschetto KA, Gharahdaghi F, Mechanism of inhibition of fatty acid amide hydrolase by sulfonamide-containing benzothiazoles: long residence time derived from increased kinetic barrier and not exclusively from thermodynamic potency. Biochemistry 2011;50:6867-78
  • Butini S, Brindisi M, Gemma S, Discovery of potent inhibitors of human and mouse fatty acid amide hydrolases. J Med Chem 2012;55:6898-915
  • Marshall GR, Beusen DD. Molecular modeling in drug design. In: Abram DJ, editor. Burger's medical chemistry and drug discovery. John Wiley & Sons, Hoboken; 2003
  • Lodola A, Rivara S, Mor M. Application of computational methods to the design of fatty acid amide hydrolase (FAAH) inhibitors based on a carbamic template structure. Adv Protein Chem Struct Biol 2011;85:1-26
  • Lodola A, Mor M, Rivara S, Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling. Chem Commun 2008;2:214-16
  • Lodola A, Capoferri L, Rivara S, Understanding the role of carbamate reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling. Chem Commun 2011;47:2517-19
  • Palermo G, Branduardi D, Masetti M, Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine and piperazine aryl ureas. J Med Chem 2011;54:6612-23
  • Tarzia G, Duranti A, Tontini A, Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors. J Med Chem 2003;46:2352-60
  • Mor M, Rivara S, Lodola A, Cyclohexylcarbamic acid 3'- or 4'-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies. J Med Chem 2004;47:4998-5008
  • Alexander JP, Cravatt BF. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol 2005;12:1179-87
  • Piomelli D, Tarzia G, Duranti A, Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 2006;12:21-38
  • Holt S, Comelli F, Costa B, Fowler CJ. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br J Pharmacol 2005;146:467-76
  • Jayamanne A, Greenwood R, Mitchell VA, Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 2006;147:281-8
  • Jhaveri MD, Richardson D, Kendall DA, Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci 2006;26:13318-27
  • Storr MA, Keenan CM, Emmerdinger D, Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl) 2008;86:925-36
  • Scherma M, Medalie J, Fratta W, The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology 2008;54:129-40
  • Bortolato M, Mangieri RA, Fu J, Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 2007;62:1103-10
  • Abouabdellah A, Burnier P, Hoornaert C, Derivates of piperidinyl-and piperazinyl-alkyl carbamates, preparation methods thereof and application of some in therapeutics. US20060089344; 2006
  • Ahn K, Johnson DS, Mileni M, Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 2009;16:411-20
  • Mileni M, Johnson DS, Wang Z, Structure-guided inhibitor design for human FAAH by interspecies active site conversion. Proc Natl Acad Sci USA 2008;105:12820-4
  • Johnson DS, Stiff C, Lazerwith SE, Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Med Chem Lett 2011;2:91-6
  • Huggins JP, Smart TS, Langman S, An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 2012;153:1837-46
  • Karbarz MJ, Luo L, Chang L, Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. Anesth Analg 2009;108:316-29
  • Hart T, Macias AT, Benwell K, Fatty acid amide hydrolase inhibitors. Surprising selectivity of chiral azetidine ureas. Bioorg Med Chem Lett 2009;19:4241-4
  • Tichenor MS, Keith JM, Jones WM, Heteroaryl urea inhibitors of fatty acid amide hydrolase: structure-mutagenicity relationships for arylamine metabolites. Bioorg Med Chem Lett 2012;22:7357-62
  • Alapafuja SO, Nikas SP, Bharathan IT, Sulfonyl fluoride inhibitors of Fatty Acid amide hydrolase. J Med Chem 2012;55:10074-89
  • Godlewski G, Alapafuja SO, Batkai S, Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem Biol (Cambridge, MA, U. S.) 2010;17:1256-66
  • Bashashati M, Storr MA, Nikas SP, Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol 2012;165:1556-71
  • Di Venere A, Dainese E, Fezza F, Rat and human fatty acid amide hydrolases: overt similarities and hidden differences. Biochim Biophys Acta 2012;1821:1425-33
  • Li GL, Winter H, Arends R, Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. Br J Clin Pharmacol 2012;73:706-16
  • Ahn K, Smith SE, Liimatta MB, Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective FAAH inhibitor that reduces inflammatory and noninflammatory pain. J Pharmacol Exp Ther 2011;338:114-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.