750
Views
17
CrossRef citations to date
0
Altmetric
Reviews

New design strategies for antidepressant drugs

, , &
Pages 1399-1414 | Published online: 31 Aug 2013

Bibliography

  • DEPRESSION: a Global Crisis; World Mental Health Day. 2012. Available from: http://www.who.int/mental_health/management/depression/en/
  • Hippius H. St John's Wort (‘Hypericum perforatum') - a herbal antidepressant. Curr Med Res Opin 1998;14(3):171-84
  • Wong M, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3(2):136-51
  • Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci 2006;8(3):335-44
  • Gartlehner G, Hansen RA, Reichenpfader U, et al. Drug class review: second-generation antidepressants: final update 5 report. Oregon Health & Science University; Portland OR; 2011
  • Tran P, Skolnick P, Czobor P, et al. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res 2012;46(1):64-71
  • Shaw DM, Camps FE, Eccleston EG. 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 1967;113(505):1407-11
  • Bourne HR, Bunney WE Jr, Colburn RW, et al. Noradrenaline, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in hindbrains of suicidal patients. Lancet 1968;2(7572):805-8
  • Glassman AH, Platman SR. Potentiation of a monoamine oxidase inhibitor by tryptophan. J Psychiatr Res 1969;7(2):83-8
  • Kline NS, Sacks W. Relief of depression within one day using an M. A. O. inhibitor and intravenous 5-HTP. Am J Psychiatry 1963;120:274-5
  • Coppen A, Shaw DM, Farrell JP. Potentiation of the antidepressive effect of a monoamine-oxidase inhibitor by tryptophan. Lancet 1963;1(7272):79-81
  • Wong DT, Horng JS, Bymaster FP, et al. A selective inhibitor of serotonin uptake: lilly 110140, 3-(p-Trifluoromethylphenoxy)-n-methyl-3-phenylpropylamine. Life Sci 1974;15(3):471-9
  • Wong DT, Perry KW, Bymaster FP. The discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 2005;4(9):764-74
  • Molloy BB, Wong DT, Fuller RW. The discovery of fluoxetine. Pharm News 1994;1:6-10
  • Yeh SY, Dersch C, Rothman R, et al. Effects of antihistamines on 3, 4-methylenedioxymetham-phetamine-induced depletion of serotonin in rats. Synapse 1999;33(3):207-17
  • Schelkunov EL. Efficacy of neuroleptics and antidepressants in the test of apomorphine hypothermia and some data concerning neurochemical mechanisms of the test. Psychopharmacology (Berl) 1977;55(1):87-95
  • Pawłowski L, Mazela H. Effects of antidepressant drugs, selective noradrenaline-or 5-hydroxytryptamine uptake inhibitors, on apomorphine-induced hypothermia in mice. Psychopharmacology (Berl) 1986;88(2):240-6
  • Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry 2001;3(1):22-7
  • Lemonde S, Turecki G, Bakish D, et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003;23(25):8788-99
  • Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacol Ther 2013;137(1):119-31
  • Page ME, Cryan JF, Sullivan A, et al. Behavioral and neurochemical effects of 5-{4-[4-(5-Cyano-3-indolyl)-butyl)-butyl]-1-piperazinyl}-benzofuran-2-carboxamide (EMD 68843): a combined selective inhibitor of serotonin reuptake and 5-hydroxytryptamine1A receptor partial agonist. J Pharmacol Exp Ther 2002;302(3):1220-7
  • Gobert A, Dekeyne A, Millan MJ. The ability of WAY100,635 to potentiate the neurochemical and functional actions of fluoxetine is enhanced by co-administration of SB224,289, but not BRL15572. Neuropharmacology 2000;39(9):1608-16
  • Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005;29(4–5):547-69
  • Bressa GM, Marini S, Gregori S. Serotonin S2 receptors blockage and generalized anxiety disorders. A double-blind study on ritanserin and lorazepam. Int J Clin Pharmacol Res 1987;7(2):111-19
  • Shelton RC, Tollefson GD, Tohen M, et al. A novel augmentation strategy for treating resistant major depression. Am J Psychiatry 2001;158(1):131-4
  • Cremers TI, Rea K, Bosker FJ, et al. Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology 2007;32(7):1550-7
  • Kos T, Popik P, Pietraszek M, et al. Effect of 5-HT3 receptor antagonist MDL 72222 on behaviors induced by ketamine in rats and mice. Eur Neuropsychopharmacol 2006;16(4):297-310
  • Kelley SP, Bratt AM, Hodge CW. Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol 2003;461(1):19-25
  • Lucas G, Rymar VV, Du J, et al. Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007;55(5):712-25
  • Wesołowska A, Tatarczyńska E, Nikiforuk A, et al. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol 2007;555(1):43-7
  • Bonaventure P, Kelly L, Aluisio L, et al. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 2007;321(2):690-8
  • Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001;7(3):249-64
  • Mørk A, Pehrson A, Brennum LT, et al. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 2012;340(3):666-75
  • Yamashita A, Singh SK, Kawate T, et al. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 2005;437(7056):215-23
  • Gouaux E. The molecular logic of sodium-coupled neurotransmitter transporters. Philos Trans R Soc Lond B Biol Sci 2009;364(1514):149-54
  • Shan J, Javitch JA, Shi L, et al. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One 2011;6(1):e16350
  • Zhao Y, Terry DS, Shi L, et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 2011;474(7349):109-13
  • Shi L, Quick M, Zhao Y, et al. The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 2008;30(6):667-77
  • Quick M, Shi L, Zehnpfennig B, et al. Experimental conditions can obscure the second high-affinity site in LeuT. Nat Struct Mol Biol 2012;19(2):207-11
  • Zhou Z, Zhen J, Karpowich NK, et al. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 2009;16(2):652-7
  • Piscitelli CL, Krishnamurthy H, Gouaux E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 2010;468(7327):1129-32
  • Wang H, Elferich J, Gouaux E. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol 2012;19(2):212-19
  • Manepalli S, Surratt C, Madura J, et al. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS J 2012;14(4):820-31
  • Ravna AW, Jaronczyk M, Sylte I. A homology model of SERT based on the LeuTAa template. Bioorg Med Chem Lett 2006;16(21):5594-7
  • Henry LK, DeFelice LJ, Blakely RD. Getting the message across: a recent transporter structure shows the way. Neuron 2006;49(6):791-6
  • Kaufmann KW, Dawson ES, Henry LK, et al. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins 2009;74(3):630-42
  • Celik L, Sinning S, Severinsen K, et al. Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc 2008;130(12):3853-65
  • Jørgensen AM, Tagmose L, Jørgensen AM, et al. Homology modeling of the serotonin transporter: insights into the primary escitalopram-binding site. ChemMedChem 2007;2(6):815-26
  • Sarker S, Weissensteiner R, Steiner I, et al. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 2010;78(6):1026-35
  • Andersen J, Olsen L, Hansen KB, et al. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem 2010;285(3):2051-63
  • Andersen J, Stuhr-Hansen N, Zachariassen L, et al. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc Natl Acad Sci 2011;108(29):12137-42
  • Andersen J, Taboureau O, Hansen KB, et al. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 2009;284(15):10276-84
  • Wenthur CJ, Rodríguez GJ, Kuntz CP, et al. Conformational flexibility of transmembrane helix VII of the human serotonin transporter impacts ion dependence and transport. Biochem Pharmacol 2010;80(9):1418-26
  • Gabrielsen M, Ravna A, Kristiansen K, et al. Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. J Mol Model 2012;18(3):1073-85
  • Sucic S, Dallinger S, Zdrazil B, et al. The N terminus of monoamine transporters is a lever required for the action of amphetamines. J Biol Chem 2010;285(14):10924-38
  • Koldsø H, Noer P, Grouleff J, et al. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na+/Cl- ion release. PLoS Comput Biol 2011;7(10):e1002246
  • Jørgensen AM, Tagmose L, Jørgensen AM, et al. Molecular dynamics simulations of Na+/Cl−-dependent neurotransmitter transporters in a membrane-aqueous system. ChemMedChem 2007;2(6):827-40
  • Warne T, Serrano-Vega MJ, Baker JG, et al. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008;454(7203):486-91
  • Chien EY, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010;330(6007):1091-5
  • Wang C, Jiang Y, Ma J, et al. Structural basis for molecular recognition at serotonin receptors. Science 2013;340(6132):610-14
  • Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000;5(3):262-9
  • Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20(24):9104-10
  • Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301(5634):805-9
  • Malberg JE, Schechter LE. Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. Curr Pharm Des 2005;11(2):145-55
  • Perera TD, Coplan JD, Lisanby SH, et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 2007;27(18):4894-901
  • MacMillan KS, Naidoo J, Liang J, et al. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc 2011;133(5):1428-37
  • Pieper AA, Xie S, Capota E, et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 2010;142(1):39-51
  • Yan HC, Cao X, Gao TM, et al. Promoting adult hippocampal neurogenesis: a novel strategy for antidepressant drug screening. Curr Med Chem 2011;18(28):4359-67
  • Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science 2012;338(6103):68-72
  • Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 2010;35(12):2378-91
  • Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 2001;41(3):856-64
  • Nicolaou KC, Hanko R, Hartwig W. editors. Handbook of combinatorial chemistry: drugs, catalysts, materials. Wiley-VCH; Weinheim, Germany; 2005
  • Bleicher KH, Bohm HJ, Muller K, et al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2003;2(5):369-78
  • Lattmann E, Merino I, Dunn S, et al. Novel 5-HT7 ligands as antidepressants: automated synthesis of NSubstituted- N-[1-Methyl-3-(4-Methylpiperidin-1-yl)propyl]-arylsulfonamides. Lett Drug Des Discov 2006;3(1):49-54
  • Atkinson PJ, Bromidge SM, Duxon MS, et al. 3,4-dihydro-2H-benzoxazinones are 5-HT1A receptor antagonists with potent 5-HT reuptake inhibitory activity. Bioorg Med Chem Lett 2005;15(3):737-41
  • Viegas-Junior C, Danuello A, da Silva Bolzani V, et al. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 2007;14(17):1829-52
  • Nolan TL, Lapinsky DJ, Talbot JN, et al. Identification of a novel selective serotonin reuptake inhibitor by coupling monoamine transporter-based virtual screening and rational molecular hybridization. ACS Chem Neurosci 2011;2(9):544-52
  • Zhou D, Stack GP, Lo J, et al. Synthesis, potency, and in vivo evaluation of 2-piperazin-1-ylquinoline analogues as dual serotonin reuptake inhibitors and serotonin 5-HT1A receptor antagonists. J Med Chem 2009;52(15):4955-9
  • Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002;1(11):882-94
  • Johnson MA, Maggiora GM. editor. Concepts and applications of molecular similarity. John Wiley & Sons; New York: 1990
  • Willett P. Similarity-based approaches to virtual screening. Biochem Soc Trans 2003;31:603-6
  • Martin YC. 3D database searching in drug design. J Med Chem 1992;35(12):2145-54
  • Martin Y, Bures M, Danaher E, et al. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 1993;7(1):83-102
  • Orús L, Pérez-Silanes S, Oficialdegui A-M, et al. Synthesis and molecular modeling of new 1-aryl-3-[4-arylpiperazin-1-yl]-1-propane derivatives with high affinity at the serotonin transporter and at 5-HT1A receptors. J Med Chem 2002;45(19):4128-39
  • Zhang S, Fernandez F, Hazeldine S, et al. Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S) pyran derivatives: a proposed pharmacophore model for high-affinity interaction with the dopamine, serotonin, and norepinephrine transporters. J Med Chem 2006;49(14):4239-47
  • Chang C, Ekins S, Bahadduri P, et al. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev 2006;58(12–13):1431-50
  • Zhang Q, Muegge I. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 2006;49(5):1536-48
  • Krüger DM, Evers A. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 2010;5(1):148-58
  • Kim CY, Mahaney PE, McConnell O, et al. Discovery of a new series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols. Bioorg Med Chem Lett 2009;19(17):5029-32
  • Wang S, Sakamuri S, Enyedy IJ, et al. Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure−activity relationships, and behavioral pharmacological studies. J Med Chem 2000;43(3):351-60
  • Brust A, Palant E, Croker DE, et al. Chi-conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J Med Chem 2009;52(22):6991-7002
  • Ahmed A, Choo H, Cho YS, et al. Identification of novel serotonin 2C receptor ligands by sequential virtual screening. Bioorg Med Chem 2009;17(13):4559-68
  • Moustakas DT, Lang PT, Pegg S, et al. Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 2006;20(10-11):601-19
  • Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuTAa leucine transporter as a template. Proteins 2008;70(3):1033-46
  • Oshiro C, Bradley EK, Eksterowicz J, et al. Performance of 3D-database molecular docking studies into homology models. J Med Chem 2004;47(3):764-7
  • Kairys V, Fernandes MX, Gilson MK. Screening drug-like compounds by docking to homology models: a systematic study. J Chem Inf Model 2005;46(1):365-79
  • Petrey D, Honig B. Protein structure prediction: inroads to biology. Mol Cell 2005;20(6):811-19
  • Hillisch A, Pineda LF, Hilgenfeld R. Utility of homology models in the drug discovery process. Drug Discov Today 2004;9(15):659-69
  • Dunbrack RL Jr. Sequence comparison and protein structure prediction. Curr Opin Struct Biol 2006;16(3):374-84
  • Becker OM, Marantz Y, Shacham S, et al. G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci USA 2004;101(31):11304-9
  • Sheridan RP. Alternative global goodness metrics and sensitivity analysis: heuristics to check the robustness of conclusions from studies comparing virtual screening methods. J Chem Inf Model 2008;48(2):426-33
  • Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006;11(13–14):580-94
  • Indarte MN, Liu Y, Madura JD, et al. Receptor-based discovery of a plasmalemmal monoamine transporter inhibitor via high-throughput docking and pharmacophore modeling. ACS Chem Neurosci 2010;1(3):223-33
  • Manepalli S, Geffert LM, Surratt CK, et al. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J Chem Inf Model 2011;51(9):2417-26
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4(8):649-63
  • Jahnke W, Erlanson DA. Fragment-based approaches in drug discovery. Methods and principles in medicinal chemistry In: Mannhold R, Kubinyi H, Folkers G, editor. Wiley-VCH; Weinheim, Germany; 2006
  • Carr RAE, Congreve M, Murray CW, et al. Fragment-based lead discovery: leads by design. Drug Discov Today 2005;10(14):987-92
  • Zoete V, Grosdidier A, Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med 2009;13(2):238-48
  • Konteatis ZD. In silico fragment-based drug design. Expert Opin Drug Discov 2010;5(11):1047-65
  • Hubbard R, Chen L, Davis B. Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Devel 2007;10(3):289-97
  • Irwin JJ, Shoichet BK. ZINC − a free database of commercially available compounds for virtual screening. J Chem Inf Model 2004;45(1):177-82
  • Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003;300(5626):1763-7
  • Enyedy IJ, Lee S-L, Kuo AH, et al. Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. J Med Chem 2001;44(9):1349-55
  • Enyedy IJ, Ling Y, Nacro K, et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 2001;44(25):4313-24
  • Li R, Chen X, Gong B, et al. Structure-based design of parasitic protease inhibitors. Bioorg Med Chem 1996;4(9):1421-7
  • Rajnarayanan RV, Dakshanamurthy S, Pattabiraman N. “Teaching old drugs to kill new bugs”: structure-based discovery of anti-SARS drugs. Biochem Biophys Res Commun 2004;321(2):370-8
  • Selzer PM, Chen X, Chan VJ, et al. Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp Parasitol 1997;87(3):212-21
  • Zuccotto F, Zvelebil M, Brun R, et al. Novel inhibitors of trypanosoma cruzi dihydrofolate reductase. Eur J Med Chem 2001;36(5):395-405
  • Lapinsky DJ, Aggarwal S, Nolan TL, et al. (±)-2-(N-tert-Butylamino)-3′-[125I]-iodo-4′-azidopropiophenone: a dopamine transporter and nicotinic acetylcholine receptor photoaffinity ligand based on bupropion (Wellbutrin, Zyban). Bioorg Med Chem Lett 2012;22(1):523-6
  • Lapinsky DJ, Velagaleti R, Yarravarapu N, et al. Azido-iodo-N-benzyl derivatives of threo-methylphenidate (Ritalin, Concerta): rational design, synthesis, pharmacological evaluation, and dopamine transporter photoaffinity labeling. Bioorg Med Chem 2011;19(1):504-12
  • Lapinsky DJ, Yarravarapu N, Nolan TL, et al. Evolution of a compact photoprobe for the dopamine transporter based on (±)-threo-methylphenidate. ACS Med Chem Lett 2012;3(5):378-82
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455-61
  • DOCK. Available from: http://dock.compbio.ucsf.edu/
  • Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004;47(7):1750-9
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47(7):1739-49
  • Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267(3):727-48
  • Docking@Home. Available from: http://docking.cis.udel.edu/
  • Moldover B, Solidar A, Montgomery C, et al. ChemVassa: a new method for identifying small molecule hits in drug discovery. Open Med Chem J 2012;6:29-34
  • Hardy B, Affentranger R. Collaborative virtual organisation and infrastructure for drug discovery. Drug Discov Today 2013;18(13–14):681-6
  • Wong DT, Bymaster FP, Horng JS, et al. A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther 1975;193(3):804-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.