667
Views
34
CrossRef citations to date
0
Altmetric
Reviews

The importance of synthetic drugs for type 2 diabetes drug discovery

, & (Professor and Dean, Tehran University of Medical Sciences, Faculty of Pharmacy and pharmaceutical Sciences Research Center)
Pages 1339-1363 | Published online: 19 Sep 2013

Bibliography

  • Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539-53
  • Beletate V, El Dib RP, Atallah AN. Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev 2007(1):CD005525
  • Kuzuya T, Nakagawa S, Satoh J, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 2002;55:65-85
  • Kuzuya T, Matsuda A. Classification of diabetes on the basis of etiologies versus degree of insulin deficiency. Diabetes Care 1997;20:219-20
  • American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2008;31(Suppl 1):S55-60
  • Sollu M, Banji D, Banji OJF, Kumbala VCS. Appraisal on causes and treatment of diabetes mellitus. Arch Appl Sci Res 2010;2(5):239-60
  • McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010;363:2339-50
  • Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013;268:157-77
  • Hadjibabaie M, Gholami K, Khalili H, et al. Comparative efficacy and safety of atorvastatin, simvastatin and lovastatin in the management of dyslipidemic type 2 diabetic patients. Therapy 2006;3:759-64
  • Havale SH, Pal M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg Med Chem 2009;17:1783-802
  • Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxide Med Cell Longev 2013;2013:168039
  • McLennan SV, Abdollahi M, Twigg SM. Connective tissue growth factor, matrix regulation, and diabetic kidney disease. Curr Opin Nephrol Hypertens 2013;22:85-92
  • Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005;59:365-73
  • Crane PK, Walker R, Hubbard RA, et al. Glucose levels and risk of dementia. N Engl J Med 2013;369(6):540-8
  • Bastaki S. Diabetes mellitus and its treatment. Int J Diabetes Metab 2005;13:111-34
  • Salari P, Nikfar S, Abdollahi M. No superiority of exenatide over insulin in diabetic patients in terms of weight reduction or incidence of adverse effects: a meta-analysis. Int J Pharmacol 2011;7:749-56
  • Freeman JS. The increasing epidemiology of diabetes and review of current treatment algorithms. J Am Osteopath Assoc 2010;110:eS2-6
  • Monika G, Sarbjot S, Punam G. Dipeptidyl peptidase-4 inhibitors: a new approach in diabetes treatment. Int J Drug Dev Res 2009;1:146-56
  • Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009;32:193-203
  • Momtaz S, Abdollahi M. An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int J Pharmacol 2010;6(4):454-61
  • Abdollahi M, Zuki AB, Goh YM, et al. Effects of Momordica charantia on pancreatic histopathological changes associated with streptozotocin-induced diabetes in neonatal rats. Histol Histopathol 2011;26:13-21
  • Badri S, Dashti-Khavidaki S, Lessan-Pezeshki M, Abdollahi M. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J Pharm Pharm Sci 2011;14:128-37
  • Farshchi A, Nikfar S, Abdollahi M. Concerns on the use of chromium in type 2 diabetes mellitus; needs to conduct major meta-analysis. Int J Pharmacol 2012;8:472
  • Ghamarian A, Abdollahi M, Su X, et al. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. Daru 2012;20:56
  • Hasani-Ranjbar S, Larijani B, Abdollahi M. A systematic review of Iranian medicinal plants useful in diabetes mellitus. Arch Med Sci 2008;4:285-92
  • Hasani-Ranjbar S, Larijani B, Abdollahi M. Recent update on animal and human evidences of promising anti-diabetic medicinal plants: a mini-review of targeting new drugs. Asian J Anim Vet Adv 2011;6:1271-5
  • Hirsch IB. Insulin analogues. N Engl J Med 2005;352:174-83
  • Khanavi M, Taheri M, Rajabi A, et al. Stimulation of hepatic glycogenolysis and inhibition of gluconeogenesis are the mechanisms of antidiabetic effect of Centaurea bruguierana ssp. belangerana. Asian J Anim Vet Adv 2012;7:1166-74
  • Noor A, Bansal VS, Vijayalakshmi MA. Current update on anti-diabetic biomolecules from key traditional Indian medicinal plants. Curr Sci 2013;104:721-5
  • Sarkhail P, Abdollahi M, Fadayevatan S, et al. Effect of Phlomis persica on glucose levels and hepatic enzymatic antioxidants in streptozotocin-induced diabetic rats. Pharmacogn Mag 2010;6:219-24
  • Nakai M, Sekiguchi F, Obata M, et al. Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. J Inorg Biochem 2005;99:1275-82
  • Sakurai H, Adachi Y. The pharmacology of the insulinomimetic effect of zinc complexes. Biometals 2005;18:319-23
  • Sanghera DK, Blackett PR. Type 2 diabetes genetics: beyond gwas. J Diabetes Metab 2012;3(189):6948
  • Edelman SV. Type II diabetes mellitus. Adv Intern Med 1998;43:449-500
  • Mercado MM, McLenithan JC, Silver KD, Shuldiner AR. Genetics of insulin resistance. Curr Diab Rep 2002;2:83-95
  • Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. Am J Cardiol 2002;90(5):3-10
  • Bloomgarden ZT. Insulin resistance: current concepts. Clin Ther 1998;20:216-31
  • Watanabe RM. The genetics of insulin resistance: where's Waldo? Curr Diab Rep 2010;10:476-84
  • Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006;17:4-12
  • Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013;369(2):145-54
  • Saeidi N, Meoli L, Nestoridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 2013;341(6144):406-10
  • Das UN. Obesity, metabolic syndrome X, and inflammation. Nutrition 2002;18:430-2
  • Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46:2347-55
  • Kroder G, Bossenmaier B, Kellerer M, et al. Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling. J Clin Invest 1996;97:1471-7
  • Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003;311:372-9
  • Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000;106:165-9
  • Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96
  • Walker RJ, Anderson NM, Jiang Y, et al. Role of beta-adrenergic receptor regulation of TNF-alpha and insulin signaling in retinal Muller cells. Invest Ophthalmol Vis Sci 2011;52:9527-33
  • Reiter CE, Wu X, Sandirasegarane L, et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 2006;55:1148-56
  • White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002;283:413-22
  • Khan AH, Pessin JE. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 2002;45:1475-83
  • Sasaoka T, Hori H, Wada T, et al. SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia 2001;44:1258-67
  • Sasaoka T, Wada T, Tsuneki H. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity. Pharmacol Ther 2006;112:799-809
  • Wada T, Sasaoka T, Funaki M, et al. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity. Mol Cell Biol 2001;21:1633-46
  • Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994;94:1543-9
  • Long SD, Pekala PH. Regulation of GLUT4 mRNA stability by tumor necrosis factor-alpha: alterations in both protein binding to the 3' untranslated region and initiation of translation. Biochem Biophys Res Commun 1996;220(3):949-53
  • Bastard JP, Maachi M, Van Nhieu JT, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab 2002;87(5):2084-9
  • Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004;92:347-55
  • Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006;116:1756-60
  • Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 2013;4:37
  • Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 2006;116:1802-12
  • Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 2008;29:351-66
  • Xiang AH, Kawakubo M, Trigo E, et al. Declining beta-cell compensation for insulin resistance in Hispanic women with recent gestational diabetes mellitus: association with changes in weight, adiponectin, and C-reactive protein. Diabetes Care 2010;33:396-401
  • Faghihi T, Radfar M, Barmal M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther 2013; Published online 29 Apr 2013; doi:10.1097/MJT.0b013e318269175f
  • Navaei-Nigjeh M, Rahimifard M, Pourkhalili N, et al. Multi-organ protective effects of cerium oxide nanoparticle/selenium in diabetic rats: evidence for more efficiency of nanocerium in comparison to metal form of cerium. Asian J Anim Vet Adv 2012;7:605-12
  • Tabatabaei-Malazy O, Larijani B, Abdollahi M. A novel management of diabetes by means of strong antioxidants' combination. J Med Hypotheses Ideas 2013;7:25-30
  • Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, et al. Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2011;2:204-10
  • Drews G, Krippeit-Drews P, Dufer M. Oxidative stress and beta-cell dysfunction. Pflugers Arch 2010;460:703-18
  • Abdollahi M, Fooladian F, Emami B, et al. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol 2003;22:587-92
  • Astaneie F, Afshari M, Mojtahedi A, et al. Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients. Arch Med Res 2005;36:376-81
  • Farshchi A, Nikfar S, Seyedifar M, Abdollahi M. Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. J Pharm Pharm Sci 2013;16:99-114
  • Hosseini A, Abdollahi M. It is time to formulate an antioxidant mixture for management of diabetes and its complications: notice for pharmaceutical industries. Int J Pharm 2012;8:60-1
  • Kamyab S, Hejrati S, Khanavi M, Mohammadirad A. Hepatic mechanisms of the Walnut antidiabetic effect in mice. Cent Eur J Biol 2010;5:304-9
  • Larijani B, Afshari M, Astanehi-Asghari F, et al. Effect of short-term carvedilol therapy on salivary and plasma oxidative stress parameters and plasma glucose level in type II diabetes. Therapy 2006;3:119-23
  • Milani E, Nikfar S, Khorasani R, et al. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp Biochem Physiol C Toxicol Pharmacol 2005;140:251-5
  • Mohseni Salehi Monfared SS, Larijani B, Abdollahi M. Islet transplantation and antioxidant management: a comprehensive review. World J Gastroenterol 2009;15:1153-61
  • Radfar M, Larijani B, Hadjibabaie M, et al. Effects of pentoxifylline on oxidative stress and levels of EGF and NO in blood of diabetic type-2 patients; a randomized, double-blind placebo-controlled clinical trial. Biomed Pharmacother 2005;59:302-6
  • Sarkhail P, Rahmanipour S, Fadyevatan S, et al. Antidiabetic effect of Phlomis anisodonta: effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Pharmacol Res 2007;56:261-6
  • Vosough-Ghanbari S, Rahimi R, Kharabaf S, et al. Effects of Satureja khuzestanica on serum glucose, lipids and markers of oxidative stress in patients with type 2 diabetes mellitus: a double-blind randomized controlled trial. Evid Based Complement Alternat Med 2010;7:465-70
  • Bolzano K. Biguanides: reasons for withdrawal of drugs and remaining indications. Acta Med Austriaca 1978;5:85-8
  • Luft D, Schmulling RM, Eggstein M. Lactic acidosis in biguanide-treated diabetics: a review of 330 cases. Diabetologia 1978;14:75-87
  • Ansari G, Mojtahedzadeh M, Kajbaf F, et al. How does blood glucose control with metformin influence intensive insulin protocols? Evidence for involvement of oxidative stress and inflammatory cytokines. Adv Ther 2008;25:681-702
  • Defronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 1995;333:541-9
  • Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89
  • Morsink LM, Smits MM, Diamant M. Advances in pharmacologic therapies for type 2 diabetes. Curr Atheroscler Rep 2013;15:302
  • Bailey CJ, Turner RC. Metformin. N Engl J Med 1996;334:574-9
  • Cusi K, Consoli A, Defronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996;81:4059-67
  • Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000;49:2063-9
  • Del Prato S, Marchetto S, Pipitone A, et al. Metformin and free fatty acid metabolism. Diabetes Metab Rev 1995;11:33-41
  • Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995;333:550-4
  • Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997;273:1107-12
  • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-74
  • Palumbo PJ. Metformin: effects on cardiovascular risk factors in patients with non-insulin-dependent diabetes mellitus. J Diabetes Complications 1998;12:110-19
  • Garber AJ, Duncan TG, Goodman AM, et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med 1997;103:491-7
  • Sheehan MT. Current therapeutic options in type 2 diabetes mellitus: a practical approach. Clin Med Res 2003;1:189-200
  • Stang M, Wysowski DK, Butler-Jones D. Incidence of lactic acidosis in metformin users. Diabetes Care 1999;22:925-7
  • Stolar MW, Hoogwerf BJ, Gorshow SM, et al. Managing type 2 diabetes: going beyond glycemic control. J Manag Care Pharm 2008;14:s2-19
  • Rendell MS, Kirchain WR. Pharmacotherapy of type 2 diabetes mellitus. Ann Pharmacother 2000;34:878-95
  • Bharatam PV, Patel DS, Iqbal P. Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem 2005;48:7615-22
  • Setter SM, Iltz JL, Thams J, Campbell RK. Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Ther 2003;25:2991-3026
  • Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 2006;55:20-7
  • Bryan J, Crane A, Vila-Carriles WH, et al. Insulin secretagogues, sulfonylurea receptors and K(ATP) channels. Curr Pharm Des 2005;11:2699-716
  • Gribble FM, Reimann F. Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions. J Diabetes Complications 2003;17:11-15
  • Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab 2000;11:218-23
  • Bak JF, Pedersen O. Gliclazide and insulin action in human muscle. Diabetes Res Clin Pract 1991;14(2):61-4
  • Pedersen O, Hother-Nielsen O, Bak J, et al. Effects of sulfonylureas on adipocyte and skeletal muscle insulin action in patients with non-insulin-dependent diabetes mellitus. Am J Med 1991;90(6A):22-8
  • Korytkowski MT. Sulfonylurea treatment of type 2 diabetes mellitus: focus on glimepiride. Pharmacotherapy 2004;24:606-20
  • Jasik M. Glimepiride in daily practice. Przegl Lek 2003;60:409-12
  • Basit A, Riaz M, Fawwad A. Glimepiride: evidence-based facts, trends, and observations (GIFTS). Vasc Health Risk Manag 2012;8:463-72
  • Bijlstra PJ, Lutterman JA, Russel FG, et al. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Diabetologia 1996;39:1083-90
  • Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab 2003;88:531-7
  • Campbell RK. Glimepiride: role of a new sulfonylurea in the treatment of type 2 diabetes mellitus. Ann Pharmacother 1998;32:1044-52
  • Dornhorst A. Insulinotropic meglitinide analogues. Lancet 2001;358:1709-16
  • Malaisse WJ. Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus. Treat Endocrinol 2003;2:401-14
  • Li J, Tian H, Li Q, et al. Improvement of insulin sensitivity and beta-cell function by nateglinide and repaglinide in type 2 diabetic patients - a randomized controlled double-blind and double-dummy multicentre clinical trial. Diabetes Obes Metab 2007;9:558-65
  • Rosenstock J, Hassman DR, Madder RD, et al. Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care 2004;27:1265-70
  • Hu S, Wang S, Fanelli B, et al. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther 2000;293:444-52
  • McLeod JF. Clinical pharmacokinetics of nateglinide: a rapidly-absorbed, short-acting insulinotropic agent. Clin Pharmacokinet 2004;43:97-120
  • Chachin M, Yamada M, Fujita A, et al. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels. J Pharmacol Exp Ther 2003;304:1025-32
  • Campbell IW. Nateglinide--current and future role in the treatment of patients with type 2 diabetes mellitus. Int J Clin Pract 2005;59:1218-28
  • Spencer CM, Markham A. Troglitazone. Drugs 1997;54:89-101
  • Bae MA, Rhee H, Song BJ. Troglitazone but not rosiglitazone induces G1 cell cycle arrest and apoptosis in human and rat hepatoma cell lines. Toxicol Lett 2003;139:67-75
  • Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994;331:1188-93
  • Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992;15:193-203
  • Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004;351:1106-18
  • Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998;101:1354-61
  • Picard F, Auwerx J. PPAR (gamma) and glucose homeostasis. Annu Rev Nutr 2002;22:167-97
  • Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773-95
  • Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001;50:2094-9
  • Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002;277:37487-91
  • Phillips LS, Grunberger G, Miller E, et al. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 2001;24:308-15
  • Park KS, Ciaraldi TP, Abrams-Carter L, et al. Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese type II diabetic subjects. J Clin Endocrinol Metab 1998;83:1636-43
  • Idris I, Gray S, Donnelly R. Rosiglitazone and pulmonary oedema: an acute dose-dependent effect on human endothelial cell permeability. Diabetologia 2003;46:288-90
  • Page RL, Gozansky WS, Ruscin JM. Possible heart failure exacerbation associated with rosiglitazone: case report and literature review. Pharmacotherapy 2003;23:945-54
  • Papoushek C. The “glitazones”: rosiglitazone and pioglitazone. J Obstet Gynaecol Can 2003;25:853-7
  • Gim HJ, Cheon YJ, Ryu JH, Jeon R. Design and synthesis of benzoxazole containing indole analogs as peroxisome proliferator-activated receptor-gamma/delta dual agonists. Bioorg Med Chem Lett 2011;21:3057-61
  • Matsumoto K, Yano M, Miyake S, et al. Effects of voglibose on glycemic excursions, insulin secretion, and insulin sensitivity in non-insulin-treated NIDDM patients. Diabetes Care 1998;21:256-60
  • Shinozaki K, Suzuki M, Ikebuchi M, et al. Improvement of insulin sensitivity and dyslipidemia with a new alpha-glucosidase inhibitor, voglibose, in nondiabetic hyperinsulinemic subjects. Metabolism 1996;45:731-7
  • Scheen AJ. Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs 2003;63:933-51
  • Johnston PS, Lebovitz HE, Coniff RF, et al. Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab 1998;83:1515-22
  • Balfour JA, McTavish D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993;46:1025-54
  • Santeusanio F, Compagnucci P. A risk-benefit appraisal of acarbose in the management of non-insulin-dependent diabetes mellitus. Drug Saf 1994;11:432-44
  • Reuser AJ, Wisselaar HA. An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Eur J Clin Invest 1994;24(3):19-24
  • Geng P, Qiu F, Zhu Y, Bai G. Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of alpha-amylase. Carbohydr Res 2008;343:882-92
  • van Genugten RE, van Raalte DH, Diamant M. Does glucagon-like peptide-1 receptor agonist therapy add value in the treatment of type 2 diabetes? Focus on exenatide. Diabetes Res Clin Pract 2009;86(Suppl 1):S26-34
  • Parks M, Rosebraugh C. Weighing risks and benefits of liraglutide--the FDA's review of a new antidiabetic therapy. N Engl J Med 2010;362:774-7
  • Nikfar S, Abdollahi M, Salari P. The efficacy and tolerability of exenatide in comparison to placebo; a systematic review and meta-analysis of randomized clinical trials. J Pharm Pharm Sci 2012;15:1-30
  • Nauck MA, Baranov O, Ritzel RA, Meier JJ. Do current incretin mimetics exploit the full therapeutic potential inherent in GLP-1 receptor stimulation? Diabetologia 2013; published online 9 Jun 2013; doi:10.1007/s00125-013-2953-6
  • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696-705
  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007;87:1409-39
  • Pospisilik JA, Stafford SG, Demuth HU, et al. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 2002;51:943-50
  • Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012;135(3):247-78
  • Siu FY, He M, de Graaf C, et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature 2013;499(7459):444-9
  • Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care 2011;34(Suppl 2):S279-84
  • Bond A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc (Bayl Univ Med Cent) 2006;19:281-4
  • Parkes DG, Pittner R, Jodka C, et al. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism 2001;50:583-9
  • Bjerre KL, Madsen LW, Andersen S, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010;151:1473-86
  • Franks AS, Lee PH, George CM. Pancreatitis: a potential complication of liraglutide? Ann Pharmacother 2012;46:1547-53
  • Wajcberg E, Amarah A. Liraglutide in the management of type 2 diabetes. Drug Des Devel Ther 2010;4:279-90
  • Augeri DJ, Robl JA, Betebenner DA, et al. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:5025-37
  • Gallwitz B. Small molecule dipeptidylpeptidase IV inhibitors under investigation for diabetes mellitus therapy. Expert Opin Investig Drugs 2011;20:723-32
  • Saisho Y, Itoh H. Dipeptidyl peptidase-4 inhibitors and angioedema: a class effect? Diabet Med 2013;30:149-50
  • Zhu L, Li Y, Qiu L, et al. Design and synthesis of 4-(2,4,5-Trifluorophenyl)butane-1,3-diamines as Dipeptidyl Peptidase IV Inhibitors. ChemMedChem 2013;8:1104-16
  • Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470-512
  • Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 2009;297:127-36
  • Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214:829-35
  • Someya Y, Tahara A, Nakano R, et al. Pharmacological profile of ASP8497, a novel, selective, and competitive dipeptidyl peptidase-IV inhibitor, in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol 2008;377:209-17
  • Gupta R, Walunj SS, Tokala RK, et al. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of Type 2 Diabetes. Curr Drug Targets 2009;10:71-87
  • Scheen A. Gliptins (dipeptidyl peptidase-4 inhibitors) and risk of acute pancreatitis. Expert Opin Drug Saf 2013;12(4):545-57
  • Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005;54:2988-94
  • Babu A. Canagliflozin for the treatment of type 2 diabetes. Drugs Today (Barc) 2013;49:363-76
  • Ghosh RK, Ghosh SM, Chawla S, Jasdanwala SA. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J Clin Pharmacol 2012;52:457-63
  • Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010;27:136-42
  • Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007;261:32-43
  • Rahmoune H, Thompson PW, Ward JM, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005;54:3427-34
  • Neumiller JJ, White JR Jr, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs 2010;70:377-85
  • Elkinson S, Scott LJ. Canagliflozin: first global approval. Drugs 2013;73:979-88
  • Hardman TC, Dubrey SW. Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes. Diabetes Ther 2011;2:133-45
  • Nomura S, Sakamaki S, Hongu M, et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem 2010;53:6355-60
  • Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med 2008;168:1975-83
  • Keche Y. Bromocriptine mesylate: food and Drug Administration approved new approach in therapy of non-insulin dependent diabetes mellitus with poor glycemic control. J Pharm Bioallied Sci 2010;2:148-50
  • Kumar KA, Kumar SP, Janardan S. Bromocriptine: a novel approach for management of type 2 diabetes mellitus. JDDT 2012;2:151-5
  • Via MA, Chandra H, Araki T, et al. Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab Syndr Obes 2010;3:43-8
  • Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 2006;3:159-65
  • Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes: part II: incretin-based therapy and beyond. Circulation 2008;117:574-84
  • Rummey C, Metz G. Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site. Proteins 2007;66:160-71
  • Edmondson SD, Mastracchio A, Duffy JL, et al. Discovery of potent and selective orally bioavailable beta-substituted phenylalanine derived dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2005;15:3048-52
  • Xu J, Wei L, Mathvink R, et al. Discovery of potent and selective phenylalanine based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2005;15:2533-6
  • Duffy JL, Kirk BA, Wang L, et al. 4-aminophenylalanine and 4-aminocyclohexylalanine derivatives as potent, selective, and orally bioavailable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 2007;17:2879-85
  • Chen P, Caldwell CG, Mathvink RJ, et al. Imidazopiperidine amides as dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Bioorg Med Chem Lett 2007;17:5853-7
  • Cho TP, Gang LZ, Long YF, et al. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2010;20:3521-5
  • Furuta S, Smart C, Hackett A, et al. Pharmacokinetics and metabolism of [14C]anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica 2013;43:432-42
  • Kato N, Oka M, Murase T, et al. Discovery and pharmacological characterization of N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methyl pyrazolo[1,5-a]pyrimidine-6-carboxamide hydrochloride (anagliptin hydrochloride salt) as a potent and selective DPP-IV inhibitor. Bioorg Med Chem 2011;19:7221-7
  • Yoshida T, Akahoshi F, Sakashita H, et al. Fused bicyclic heteroarylpiperazine-substituted L-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorg Med Chem 2012;20:5033-41
  • Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013;434:191-6
  • Magnin DR, Robl JA, Sulsky RB, et al. Synthesis of novel potent dipeptidyl peptidase IV inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of alpha-aminoacyl-l-cis-4,5-methanoprolinenitrile-based inhibitors. J Med Chem 2004;47:2587-98
  • Yoshida T, Akahoshi F, Sakashita H, et al. Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-y lcarbonyl]thiazolidine): a highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem 2012;20:5705-19
  • Sakashita H, Akahoshi F, Kitajima H, et al. [(S)-gamma-(Arylamino)prolyl]thiazolidine compounds as a novel series of potent and stable DPP-IV inhibitors. Bioorg Med Chem 2006;14:3662-71
  • Sakashita H, Akahoshi F, Yoshida T, et al. Lead optimization of [(S)-gamma-(arylamino)prolyl]thiazolidine focused on gamma-substituent: indoline compounds as potent DPP-IV inhibitors. Bioorg Med Chem 2007;15:641-55
  • Yoshida T, Sakashita H, Akahoshi F, Hayashi Y. [(S)-gamma-(4-Aryl-1-piperazinyl)-l-prolyl]thiazolidines as a novel series of highly potent and long-lasting DPP-IV inhibitors. Bioorg Med Chem Lett 2007;17:2618-21
  • Cox JM, Harper B, Mastracchio A, et al. Discovery of 3-aminopiperidines as potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2007;17:4579-83
  • Eckhardt M, Langkopf E, Mark M, et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylme thyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 2007;50:6450-3
  • Eckhardt M, Hauel N, Himmelsbach F, et al. 3,5-Dihydro-imidazo[4,5-d]pyridazin-4-ones: a class of potent DPP-4 inhibitors. Bioorg Med Chem Lett 2008;18:3158-62
  • Brigance RP, Meng W, Fura A, et al. Synthesis and SAR of azolopyrimidines as potent and selective dipeptidyl peptidase-4 (DPP4) inhibitors for type 2 diabetes. Bioorg Med Chem Lett 2010;20:4395-8
  • Parmee ER, He J, Mastracchio A, et al. 4-Amino cyclohexylglycine analogues as potent dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2004;14:43-6
  • Chen P, Caldwell CG, Ashton W, et al. Synthesis and evaluation of [(1R)-1-amino-2-(2,5-difluorophenyl)ethyl]cyclohexanes and 4-[(1R)-1-amino-2-(2,5-difluorophenyl)ethyl]piperidines as DPP-4 inhibitors. Bioorg Med Chem Lett 2011;21:1880-6
  • Maezaki H, Banno Y, Miyamoto Y, et al. Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554. Bioorg Med Chem 2011;19:4482-98
  • Ikuma Y, Hochigai H, Kimura H, et al. Discovery of 3H-imidazo[4,5-c]quinolin-4(5H)-ones as potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg Med Chem 2012;20:5864-83
  • Kinne RK, Castaneda F. SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol 2011(203):105-26
  • Kipp H, Kinne-Saffran E, Bevan C, Kinne RK. Characteristics of renal Na(+)-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias). Am J Physiol 1997;273:R134-42
  • Kurosaki E, Ogasawara H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther 2013;139:51-9
  • Isaji M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int Suppl 2011;S14-19
  • Imamura M, Nakanishi K, Suzuki T, et al. Discovery of Ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 2012;20:3263-79
  • Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 2008;51:1145-9
  • Chen ZH, Wang RW, Qing FL. Synthesis and biological evaluation of SGLT2 inhibitors: gem-difluoromethylenated Dapagliflozin analogs. Tetrahedron Lett 2012;53:2171-6
  • Yao CH, Song JS, Chen CT, et al. Discovery of novel N-beta-D-xylosylindole derivatives as sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the management of hyperglycemia in diabetes. J Med Chem 2011;54:166-78
  • Yao CH, Song JS, Chen CT, et al. Synthesis and biological evaluation of novel C-indolylxylosides as sodium-dependent glucose co-transporter 2 inhibitors. Eur J Med Chem 2012;55:32-8
  • Ikegai K, Imamura M, Suzuki T, et al. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: discovery of YM543. Bioorg Med Chem 2013;21:3934-48
  • Chen CH, Lee O, Yao CN, et al. Novel azulene-based derivatives as potent multi-receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 2010;20:6129-32
  • Rekka E, Chrysselis M, Siskou I, Kourounakis A. Synthesis of new azulene derivatives and study of their effect on lipid peroxidation and lipoxygenase activity. Chem Pharm Bull (Tokyo) 2002;50:904-7
  • Zhang LY, Yang F, Shi WQ, et al. Synthesis and antigastric ulcer activity of novel 5-isoproyl-3,8-dimethylazulene derivatives. Bioorg Med Chem Lett 2011;21:5722-5
  • Mascitti V, Maurer TS, Robinson RP, et al. Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors. J Med Chem 2011;54:2952-60
  • Mascitti V, Robinson RP, Préville C, et al. Syntheses of C-5-spirocyclic. C-glycoside SGLT2 inhibitors. Tetrahedron Lett 2010;51:1880-3
  • Vyas VK, Bhatt HG, Patel PK, et al. CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents. SAR QSAR Environ Res 2013;24:519-51
  • Wu JS, Peng YH, Wu JM, et al. Discovery of non-glycoside sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors by ligand-based virtual screening. J Med Chem 2010;53:8770-4
  • Sheridan C. SGLT2 inhibitors race to enter type-2 diabetes market. Nat Biotechnol 2012;30:899-900
  • Shing TK, Ng WL, Chan JY, Lau CB. Design, syntheses, and sar studies of carbocyclic analogues of sergliflozin as potent sodium-dependent glucose cotransporter 2 inhibitors. Chem Int Ed Engl 2013; published online 19 Jun 2013; doi:10.1002/anie.201302543
  • Gao Y, Zhao G, Liu W, et al. Thiadiazole-based thioglycosides as sodium-glucose co-transporter 2 (sglt2) inhibitors. Chin J Chem 2010;28:605-12
  • Liao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem 2011;3:1057-85
  • Liu L, Ma Y, Wang RL, et al. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics. Drug Des Devel Ther 2013;7:279-88
  • Kitada M, Kume S, Kanasaki K, et al. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets 2013;14:622-36
  • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450:712-16
  • Kun S, Nagy GZ, Toth M, et al. Synthesis of variously coupled conjugates of D-glucose, 1,3,4-oxadiazole, and 1,2,3-triazole for inhibition of glycogen phosphorylase. Carbohydr Res 2011;346:1427-38
  • Panzhinskiy E, Ren J, Nair S. Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus. Curr Med Chem 2013;20:2609-25
  • Patel D, Jain M, Shah SR, et al. Discovery of potent, selective and orally bioavailable triaryl-sulfonamide based PTP1B inhibitors. Bioorg Med Chem Lett 2012;22:1111-17
  • Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care 2011;34:1431-7
  • Becic F, Kapic E, Becic E. Glimepiride–an oral antidiabetic agent. Med Arh 2003;57:125-7
  • Clissold SP, Edwards C. Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1988;35:214-43
  • Madsbad S. Liraglutide effect and action in diabetes (LEAD™) trial. Expert Rev Endocrinol Metab 2009;4:119-29
  • Panina G. The DPP-4 inhibitor vildagliptin: robust glycaemic control in type 2 diabetes and beyond. Diabetes Obes Metab 2007;9:32-9
  • Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 2012;35:1232-8
  • Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 2006;60:1454-70
  • Tahrani AA, Piya MK, Barnett AH. Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Adv Ther 2009;26:249-62
  • Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:141-51
  • Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89
  • Feng J, Zhang Z, Wallace MB, et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 2007;50:2297-300
  • Thomas L, Eckhardt M, Langkopf E, et al. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther 2008;325:175-82
  • Metzler WJ, Yanchunas J, Weigelt C, et al. Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Sci 2008;17:240-50
  • Katsuno K, Fujimori Y, Takemura Y, et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007;320:323-30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.