694
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Balancing novelty with confined chemical space in modern drug discovery

, &

Bibliography

  • Bohanec S, Zupan J. Structure generation of constitutional isomers from structural fragments. J Chem Inf Comput Sci 1991;31(4):531-40
  • Pearlman RS, Smith KM. Novel software tools for chemical diversity. Perspect Drug Discov Des 1998;9-11:339-53
  • Virshup AM, Contreras-García J, Wipf P, et al. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J Am Chem Soc 2013;135(19):7296-303
  • Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, et al. Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 2008;4(4):322-33
  • Fitzgerald SH, Sabat M, Geysen HM. Diversity space and its application to library selection and design. J Chem Inf Model 2006;46(4):1588-97
  • Ruddigkeit L, Blum LC, Reymond J-L. Visualization and virtual screening of the chemical universe database gdb-17. J Chem Inf Model 2013;53(1):56-65
  • Barbosa AJM, Del Rio A. Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 2012;12(8):866-77
  • Medina-Franco JL. Chemoinformatic characterization of the chemical space and molecular diversity of compound libraries. In: Andrea T, editor, Diversity-oriented synthesis: basics and applications in organic synthesis, drug discovery, and chemical biology. John Wiley & Sons, Inc., Hoboken, NJ; 2013. p. 325-52
  • Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008;12(3):306-17
  • López-Vallejo F, Nefzi A, Bender A, et al. Increased diversity of libraries from libraries: chemoinformatic analysis of bis-diazacyclic libraries. Chem Biol Drug Des 2011;77(5):328-42
  • Houghten RA, Pinilla C, Giulianotti MA, et al. Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing, in vivo, and enhanced deconvolution by computational methods. J Comb Chem 2008;10(1):3-19
  • Rognan D. Towards the next generation of computational chemogenomics tools. Mol Inf 2013; In press; doi:10.1002/minf.201300054
  • Deng Z-L, Du C-X, Li X, et al. Exploring the biologically relevant chemical space for drug discovery. J Chem Inf Model 2013;53(11):2820-8
  • Paolini GV, Shapland RHB, van Hoorn WP, et al. Global mapping of pharmacological space. Nat Biotechnol 2006;24(7):805-15
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4(11):682-90
  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011;10(7):507-19
  • Nisius B, Bajorath J. Mapping of pharmacological space. Expert Opin Drug Discov 2011;6(1):1-7
  • Clemons PA, Bodycombe NE, Carrinski HA, et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 2010;107(44):18787-92
  • Yongye AB, Medina-Franco JL. Data mining of protein-binding profiling data identifies structural modifications that distinguish selective and promiscuous compounds. J Chem Inf Model 2012;52:2454-61
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25(2):197-206
  • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012;486(7403):361-7
  • Barker A, Kettle JG, Nowak T, et al. Expanding medicinal chemistry space. Drug Discov Today 2013;18(5-6):298-304
  • Medina-Franco JL, Aguayo-Ortiz R. Progress in the visualization and mining of chemical and target spaces. Mol Inf 2013; In press; doi:10.1002/minf.201300041
  • Bajorath J. A perspective on computational chemogenomics. Mol Inf 2013; In press; doi:10.1002/minf.201300034
  • Aubé J. Drug repurposing and the medicinal chemist. ACS Med Chem Lett 2012;3(6):442-4
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3(8):673-83
  • Kraft R, Kahn A, Medina-Franco JL, et al. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions. Dis Model Mech 2013;6(1):217-35
  • Duenas-Gonzalez A, Garcia-Lopez P, Herrera LA, et al. The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 2008;7:82
  • Ma D-L, Chan DS-H, Leung C-H. Drug repositioning by structure-based virtual screening. Chem Soc Rev 2013;42(5):2130-41
  • Medina-Franco JL, Giulianotti MA, Welmaker GS, et al. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013;18(9-10):495-501
  • Medina-Franco JL, Martínez-Mayorga K, Peppard TL, et al. Chemoinformatic analysis of GRAS (generally recognized as safe) flavor chemicals and natural products. PLoS One 2012;7(11):e50798
  • Martinez-Mayorga K, Peppard TL, López-Vallejo F, et al. Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds. J Agric Food Chem 2013;61(31):7507-14
  • Martínez-Mayorga K, Medina-Franco JL, Organizers. Foodinformatics: applications of chemical information to food chemistry. Division of chemical information. 245th ACS National Meeting, New Orleans, LI, United States; American Chemical Society, Washington, DC, New Orleans, LI, United States; 2013
  • Dooley C, Giulianotti M, McLaughlin J, et al. The direct in vivo screening of mixtures: fast- tracking drug discovery. Biopolymers 2009;92(4):298
  • Carroll FI, Houghten RA. From rapid in vitro screening to rapid in vivo screening in the drug discovery process. Neuropsychopharmacology 2009;34(1):251-2
  • Merino A, Bronowska AK, Jackson DB, et al. Drug profiling: knowing where it hits. Drug Discov Today 2010;15(17-18):749-56
  • Clemons PA. Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol 2004;8(3):334-8
  • Gilbert IH, Leroy D, Frearson JA. Finding new hits in neglected disease projects: target or phenotypic based screening? Curr Top Med Chem 2011;11(10):1284-91
  • Lu Q, Quinn AM, Patel MP, et al. Perspectives on the discovery of small-molecule modulators for epigenetic processes. J Biomol Screening 2012;17(5):555-71
  • Laggner C, Kokel D, Setola V, et al. Chemical informatics and target identification in a zebrafish phenotypic screen. Nat Chem Biol 2012;8(2):144-6
  • Scior T, Bender A, Tresadern G, et al. Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 2012;52(4):867-81
  • Muegge I. Synergies of virtual screening approaches. Mini Rev Med Chem 2008;8(9):927-33
  • Clark DE. What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 2008;3(8):841-51
  • Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 2013;20(23):2839-60
  • Shultz MD. Setting expectations in molecular optimizations: strengths and limitations of commonly used composite parameters. Bioorg Med Chem Lett 2013;23(21):5980-91
  • Yusof I, Segall MD. Considering the impact drug-like properties have on the chance of success. Drug Discov Today 2013;18(13–14):659-66
  • Muthas D, Boyer S, Hasselgren C. A critical assessment of modeling safety-related drug attrition. MedChemComm 2013;4(7):1058-65
  • Hann MM, Keserü GM. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 2012;11(5):355-65
  • Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2012;17(1–2):44-55
  • Yongye AB, Medina-Franco JL. Systematic characterization of structure–activity relationships and ADMET compliance: a case study. Drug Discov Today 2013;18(15–16):732-9
  • Dahlgren MK, Garcia AB, Hare AA, et al. Virtual screening and optimization yield low-nanomolar inhibitors of the tautomerase activity of plasmodium falciparum macrophage migration inhibitory factor. J Med Chem 2012;55(22):10148-59
  • Ritchie TJ, Ertl P, Lewis R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov Today 2011;16(1–2):65-72
  • Dandapani S, Marcaurelle LA. Accessing new chemical space for 'undruggable' targets. Nat Chem Biol 2010;6(12):861-3
  • Faller B, Ottaviani G, Ertl P, et al. Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov Today 2011;16(21-22):976-84
  • Roughley SD, Jordan AM. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 2011;54(10):3451-79
  • Pitt WR, Parry DM, Perry BG, et al. Heteroaromatic rings of the future. J Med Chem 2009;52(9):2952-63
  • Kennedy JP, Williams L, Bridges TM, et al. Application of combinatorial chemistry science on modern drug discovery. J Comb Chem 2008;10(3):345-54
  • Singh N, Guha R, Giulianotti MA, et al. Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 2009;49(4):1010-24
  • Brown N, Jacoby E. On scaffolds and hopping in medicinal chemistry. Mini Rev Med Chem 2006;6(11):1217-29
  • Wetzel S, Klein K, Renner S, et al. Interactive exploration of chemical space with scaffold hunter. Nat Chem Biol 2009;5(8):581-3
  • Schneider G, Neidhart W, Giller T, et al. Scaffold-hopping by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 1999;38(19):2894-6
  • Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 1988;31(12):2235-46
  • Lipkus AH, Yuan Q, Lucas KA, et al. Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 2008;73(12):4443-51
  • Dow M, Fisher M, James T, et al. Towards the systematic exploration of chemical space. Org Biomol Chem 2012;10(1):17-28
  • Ciapetti P, Giethlen B. Molecular variations based on isosteric replacements. In: Wermuth CG, editor, The practice of medicinal chemistry. 3rd edition. Elsevier, Burlington, MA; 2008. p. 290-342
  • Vogt M, Stumpfe D, Geppert H, et al. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening. J Med Chem 2010;53(15):5707-15
  • Hartenfeller M, Zettl H, Walter M, et al. Dogs: reaction-driven de novo design of bioactive compounds. PLoS Comput Biol 2012;8(2):e1002380
  • Langdon SR, Brown N, Blagg J. Scaffold diversity of exemplified medicinal chemistry space. J Chem Inf Model 2011;51(9):2174-85
  • Medina-Franco JL, Martínez-Mayorga K, Bender A, et al. Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci 2009;28(11-12):1551-60
  • Yongye AB, Waddell J, Medina-Franco JL. Molecular scaffold analysis of natural products databases in the public domain. Chem Biol Drug Des 2012;80(5):717-24
  • Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009;52(21):6752-6
  • Chen CY-C. Tcm database@taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLoS One 2011;6(1):e15939
  • López-Vallejo F, Giulianotti MA, Houghten RA, et al. Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 2012;17(13–14):718-26
  • Tommasi R, Cornella I. Focused libraries: the evolution in strategy from large-diversity libraries to the focused library approach. In: Bartlett PA, Entzeroth M, editors, Exploiting chemical diversity for drug discovery. The Royal Society of Chemistry; Cambridge, UK; 2006. p. 163-83
  • Zheng W, Johnson SR. Compound library design - principles and applications. In: Varnek A, Tropsha A, editors, Chemoinformatics approaches to virtual screening. Royal Society of Chemistry; Cambridge, UK: 2008. p. 268-94
  • Segall MD. Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr Pharm Des 2012;18(9):1292-310
  • López-Vallejo F, Caulfield T, Martínez-Mayorga K, et al. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen 2011;14(6):475-87
  • Yongye AB, Pinilla C, Medina-Franco JL, et al. Integrating computational and mixture-based screening of combinatorial libraries. J Mol Model 2011;17(6):1473-82
  • Medina-Franco JL. Advances in computational approaches for drug discovery based on natural products. Rev Latinoam Quimioter 2013;41(2):95-110
  • Ortega A, Blount JF, Manchand PS. Salvinorin, a new trans-neoclerodane diterpene from salvia-divinorum (labiatae). J Chem Soc Perkin Trans 1 1982;10:2505-8
  • Roth BL, Baner K, Westkaemper R, et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA 2002;99(18):11934-9
  • Granier S, Kobilka B. A new era of GPCR structural and chemical biology. Nat Chem Biol 2012;8(8):670-3
  • Martinez-Mayorga K, Byler KG, Yongye AB, et al. Ligand/kappa-opioid receptor interactions: insights from the x-ray crystal structure. Eur J Med Chem 2013;66:114-21
  • Yoo J, Medina-Franco JL. Inhibitors of DNA methyltransferases: insights from computational studies. Curr Med Chem 2012;19(21):3475-87
  • Andreoli F, Barbosa AJM, Parenti MD, et al. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des 2013;19(4):578-613
  • Yoo J, Medina-Franco JL. Chemoinformatic approaches for inhibitors of DNA methyltransferases: comprehensive characterization of screening libraries. Comp Mol Biosci 2011;1:7-16
  • Medina-Franco JL, Edwards BS, Pinilla C, et al. Rapid scanning structure–activity relationships in combinatorial data sets: identification of activity switches. J Chem Inf Model 2013;53(6):1475-85
  • Aguayo-Ortiz R, Pérez-Villanueva J, Hernandez-Campos A, et al. Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds. Fut Med Chem 2014; In press; doi:10.4155/FMC.13.173
  • Singh J, Petter RC, Baillie TA, et al. The resurgence of covalent drugs. Nat Rev Drug Discov 2011;10(4):307-17
  • Zinzalla G, Thurston DE. Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Fut Med Chem 2009;1(1):65-93
  • Sperandio O, Reynes CH, Camproux AC, et al. Rationalizing the chemical space of protein-protein interaction inhibitors. Drug Discov Today 2010;15(5-6):220-9
  • Higueruelo AP, Schreyer A, Bickerton GRJ, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des 2009;74(5):457-67
  • Basse MJ, Betzi S, Bourgeas R, et al. 2p2idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res 2013;41(D1):D824-D7
  • Bienstock RJ. Computational drug design targeting protein-protein interactions. Curr Pharm Des 2012;18(9):1240-54
  • Dhruv H, Loftus JC, Narang P, et al. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. J Biol Chem 2013; In press; doi:10.1074/jbc.M113.493536
  • Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today 2013;18(17–18):807-17
  • Bellavista E, Andreoli F, Parenti MD, et al. Immunoproteasome in cancer and neuropathologies: a new therapeutic target? Curr Pharm Des 2013;19(4):702-18
  • Verdine GL, Hilinski GJ. Chapter one - stapled peptides for intracellular drug targets. In: Wittrup KD, Gregory LV, editors, Methods in enzymology. Academic Press, San Diego, CA; 2012. p. 3-33
  • Floris M, Masciocchi J, Fanton M, et al. Swimming into peptidomimetic chemical space using pepMMsMIMIC. Nucleic Acids Res 2011;39:W261-W9
  • Pakkala M, Hekim C, Soininen P, et al. Activity and stability of human kalikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci 2007;13(5):348-53
  • De Luca S, Saviano M, Della Moglie R, et al. Conformationally constrained cck8 analogues obtained from a rationally designed peptide library as ligands for cholecystokinin type b receptor. ChemMedChem 2006;1(9):997-1006
  • Yongye AB, Li YM, Giulianotti MA, et al. Modeling of peptides containing d-amino acids: implications on cyclization. J Comput Aided Mol Des 2009;23(9):677-89
  • Sako Y, Morimoto J, Murakami H, et al. Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J Am Chem Soc 2008;130(23):7232-4
  • Baeriswyl V, Heinis C. Polycyclic peptide therapeutics. ChemMedChem 2013;8(3):377-84
  • Whitby LR, Boger DL. Comprehensive peptidomimetic libraries targeting protein-protein interactions. Acc Chem Res 2012;45(10):1698-709
  • Nefzi A, Ostresh JM, Yu J, et al. Combinatorial chemistry: libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds. J Org Chem 2004;69(11):3603-9
  • Schroeder CI, Craik DJ. Therapeutic potential of conopeptides. Fut Med Chem 2012;4(10):1243-55
  • Banerjee J, Yongye AB, Chang Y-P, et al. Design and synthesis of alpha-conotoxin GID analogues as selective alpha4beta2 nicotinic acetylcholine receptor antagonists. Pept Sci 2013; In press; doi:10.1002/bip.22413
  • Driggers EM, Hale SP, Lee J, et al. The exploration of macrocycles for drug discovery – an underexploited structural class. Nat Rev Drug Discov 2008;7(7):608-24
  • Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem 2013; In press; doi:10.1021/jm400887j
  • Mallinson J, Collins I. Macrocycles in new drug discovery. Fut Med Chem 2012;4(11):1409-38
  • Gasser G, Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol 2012;16(1-2):84-91
  • Meggers E. Exploring biologically relevant chemical space with metal complexes. Curr Opin Chem Biol 2007;11(3):287-92
  • García-Ramos JC, Galindo-Murillo R, Cortés-Guzmán F, et al. Metal-based drug-DNA interactions. J Mex Chem Soc 2013;57(3):245-59
  • Galan MC, Benito-Alifonso D, Watt GM. Carbohydrate chemistry in drug discovery. Org Biomol Chem 2011;9(10):3598-610
  • Cipolla L, Peri F. Carbohydrate-based bioactive compounds for medicinal chemistry applications. Mini Rev Med Chem 2011;11(1):39-54
  • Horne G, Wilson FX, Tinsley J, et al. Iminosugars past, present and future: medicines for tomorrow. Drug Discov Today 2011;16(3–4):107-18
  • Dembitsky VM. Anticancer activity of natural and synthetic acetylenic lipids. Lipids 2006;41(10):883-924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.