2,197
Views
169
CrossRef citations to date
0
Altmetric
Reviews

Organs-on-a-chip: a new tool for drug discovery

, , , , &

Bibliography

  • Harper AR, Topol EJ. Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 2012;30(11):1117-24
  • Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011;162(6):1239-49
  • Guillouzo A, Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 2008;4(10):1279-94
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 2012;12(10):1784-92
  • Frohlich EM, Alonso JL, Borenstein JT, et al. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers. Lab Chip 2013;13(12):2311
  • Griep LM, Wolbers F, de Wagenaar B, et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 2013;15(1):145-50
  • Helmke BP. Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology (Bethesda) 2005;20:43-53
  • Huh D, Leslie DC, Matthews BD, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 2012;4(159):159ra47
  • Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science 2010;328(5986):1662-8
  • Jang K-J, Suh K-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010;10(1):36
  • L'Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006;12(3):361-5
  • L'Heureux N, Pâquet S, Labbé R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998;12(1):47-56
  • L'Heureux N, Stoclet JC, Auger FA, et al. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 2001;15(2):515-24
  • Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999;284(5413):489-93
  • Beebe DJ, Ingber DE, den Toonder J. Organs on chips 2013. Lab Chip 2013;13(18):3447-8
  • Selimovic S, Dokmeci MR, Khademhosseini A. Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 2013;13(5):829-33
  • Chen L, Morrow JK, Tran HT, et al. From laptop to benchtop to bedside: structure-based drug design on protein targets. Curr Pharm Des 2012;18(9):1217-39
  • Guido RV, Oliva G, Andricopulo AD. Modern drug discovery technologies: opportunities and challenges in lead discovery. Comb Chem High Throughput Screen 2011;14(10):830-9
  • Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 2013;9(3):237-52
  • Wikswo JP, Curtis EL, Eagleton ZE, et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 2013;13(18):3496-511
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-15
  • van Midwoud PM, Verpoorte E, Groothuis GM. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr Biol (Camb) 2011;3(5):509-21
  • Zervantonakis IK, Kothapalli CR, Chung S, et al. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 2011;5(1):13406
  • Gebhardt R, Mecke D. Perifused monolayer cultures of rat hepatocytes as an improved in vitro system for studies on ureogenesis. Exp Cell Res 1979;124(2):349-59
  • Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 2007;97(5):1340-6
  • Yang Y, Li J, Pan X, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng 2013;110(3):958-68
  • Sivaraman A, Leach JK, Townsend S, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005;6(6):569-91
  • Wagner I, Materne E-M, Brincker S, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 2013;13(18):3538
  • Benetton S, Kameoka J, Tan A, et al. Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Anal Chem 2003;75(23):6430-6
  • Zguris JC, Itle LJ, Hayes D, Pishko MV. Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolite studies. Biomed Microdevices 2005;7(2):117-25
  • Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013;499(7459):481-4
  • Gomez-Lechon MJ, Castell JV, Donato MT. An update on metabolism studies using human hepatocytes in primary culture. Expert Opin Drug Metab Toxicol 2008;4(7):837-54
  • van Midwoud PM, Merema MT, Verpoorte E, Groothuis GM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 2010;10(20):2778
  • Lee SA, No da Y, Kang E, et al. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 2013;13(18):3529-37
  • Morin O, Normand C. Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone. J Cell Physiol 1986;129(1):103-10
  • Kostadinova R, Boess F, Applegate D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 2013;268(1):1-16
  • Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol 2008;26(1):120-6
  • Ho CT, Lin RZ, Chang WY, et al. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 2006;6(6):724-34
  • Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999;1999:13(14):1883-900
  • Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 2011;5(2):22212
  • Imura Y, Sato K, Yoshimura E. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem 2010;82(24):9983-8
  • Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 2012;12(7):1224-37
  • Paguirigan AL, Beebe DJ. From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integr Biol (Camb) 2009;1(2):182-95
  • Vendelin M, Bovendeerd PH, Engelbrecht J, Arts T. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am J Physiol Heart Circ Physiol 2002;283(3):H1072-81
  • Roberts DE, Scher AM. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res 1982;50(3):342-51
  • Iyer RK, Chiu LL, Reis LA, Radisic M. Engineered cardiac tissues. Curr Opin Biotechnol 2011;22(5):706-14
  • Hecker L, Birla RK. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen Med 2007;2(2):125-44
  • Parker KK, Tan J, Chen CS, Tung L. Myofibrillar architecture in engineered cardiac myocytes. Circ Res 2008;103(4):340-2
  • Grosberg A, Kuo PL, Guo CL, et al. Self-organization of muscle cell structure and function. PLoS Comput Biol 2011;7(2):e1001088
  • Cheah LT, Fritsch I, Haswell SJ, Greenman J. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications. Biotechnol Bioeng 2012;109(7):1827-34
  • Klauke N, Smith G, Cooper JM. Microfluidic systems to examine intercellular coupling of pairs of cardiac myocytes. Lab Chip 2007;7(6):731-9
  • Li XJ, Li PC. Contraction study of a single cardiac muscle cell in a microfluidic chip. Methods Mol Biol 2006;321:199-225
  • Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 2012;7(12):e51499
  • Annabi N, Selimovic S, Acevedo Cox JP, et al. Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 2013;13(18):3569-77
  • Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 2007;12(3-4):307-17
  • Saint DA. The cardiac persistent sodium current: an appealing therapeutic target? Br J Pharmacol 2008;153(6):1133-42
  • Martewicz S, Michielin F, Serena E, et al. Reversible alteration of calcium dynamics in cardiomyocytes during acute hypoxia transient in a microfluidic platform. Integr Biol (Camb) 2012;4(2):153-64
  • Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 2011;11(24):4165-73
  • Agarwal A, Goss JA, Cho A, et al. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 2013;13(18):3599-608
  • Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998;39(1):60-76
  • Salama G, London B. Mouse models of long QT syndrome. J Physiol 2007;578(Pt 1):43-53
  • Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109(24):9342-7
  • Moya ML, Hsu YH, Lee AP, et al. In vitro perfused human capillary networks. Tissue Eng Part C Methods 2013;19(9):730-7
  • Tremblay PL, Berthod F, Germain L, Auger FA. In vitro evaluation of the angiostatic potential of drugs using an endothelialized tissue-engineered connective tissue. J Pharmacol Exp Ther 2005;315(2):510-16
  • Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 2013;13(8):1489-500
  • Gunther A, Yasotharan S, Vagaon A, et al. A microfluidic platform for probing small artery structure and function. Lab Chip 2010;10(18):2341-9
  • Prabhakarpandian B, Shen MC, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011;82(3):210-20
  • Prabhakarpandian B, Shen MC, Nichols JB, et al. SyM-BBB: a microfluidic Blood Brain Barrier model. Lab Chip 2013;13(6):1093-101
  • Tam A, Wadsworth S, Dorscheid D, et al. The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis 2011;5(4):255-73
  • Zhang L, Wang J, Zhao L, et al. Analysis of chemoresistance in lung cancer with a simple microfluidic device. Electrophoresis 2010;31(22):3763-70
  • Zhang Y, Handley D, Kaplan T, et al. High throughput determination of TGFbeta1/SMAD3 targets in A549 lung epithelial cells. PLoS One 2011;6(5):e20319
  • Douville NJ, Zamankhan P, Tung YC, et al. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 2011;11(4):609-19
  • Huh D, Fujioka H, Tung YC, et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 2007;104(48):18886-91
  • Tavana H, Zamankhan P, Christensen PJ, et al. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices 2011;13(4):731-42
  • Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013;34(16):4109-17
  • Noguera R, Nieto OA, Tadeo I, et al. Extracellular matrix, biotensegrity and tumor microenvironment. An update and overview. Histol Histopathol 2012;27(6):693-705
  • Young EW. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 2013;5(9):1096-109
  • Feng X, Du W, Luo Q, Liu BF. Microfluidic chip: next-generation platform for systems biology. Anal Chim Acta 2009;650(1):83-97
  • Kirby BJ, Jodari M, Loftus MS, et al. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 2012;7(4):e35976
  • Wlodkowic D, Cooper JM. Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol 2010;14(5):556-67
  • Mauk MG, Ziober BL, Chen Z, et al. Lab-on-a-chip technologies for oral-based cancer screening and diagnostics: capabilities, issues, and prospects. Ann NY Acad Sci 2007;1098:467-75
  • Elliott NT, Yuan F. A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors. Biotechnol Bioeng 2012;109(5):1326-35
  • Nawy T. Receptive cells feel the squeeze. Nat Methods 2013;10(3):198
  • Kim C, Bang JH, Kim YE, et al. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip 2012;12(20):4135-42
  • Yang CG, Wu YF, Xu ZR, Wang JH. A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 2011;11(19):3305-12
  • Saito Y, Suzuki H, Taya T, et al. Development of a novel microRNA promoter microarray for ChIP-on-chip assay to identify epigenetically regulated microRNAs. Biochem Biophys Res Commun 2012;426(1):33-7
  • Zhao L, Caot JT, Wu ZQ, et al. Lab-on-a-Chip for anticancer drug screening using quantum dots probe based apoptosis assay. J Biomed Nanotechnol 2013;9(3):348-56
  • Cross VL, Zheng Y, Won Choi N, et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010;31(33):8596-607
  • Chung S, Sudo R, Mack PJ, et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 2009;9(2):269-75
  • Grafton MM, Wang L, Vidi P-A, et al. Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol 2011;3(4):451
  • Markov DA, Lu JQ, Samson PC, et al. Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery. Lab Chip 2012;12(21):4560-8
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012;12(12):2165
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 2013;5(9):1130
  • Sung JH, Yu J, Luo D, et al. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 2011;11(3):389
  • Ramadan Q, Jafarpoorchekab H, Huang C, et al. NutriChip: nutrition analysis meets microfluidics. Lab Chip 2013;13(2):196
  • Higuchi A, Ling Q-D, Chang Y, et al. Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chem Rev 2013;113(5):3297-328
  • Ramón-Azcón J, Ahadian S, Estili M, et al. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 2013;25(29):4028-34
  • Ricotti L, Polini A, Genchi GG, et al. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater 2012;7(3):035010
  • Hoffmann D, Adler M, Vaidya VS, et al. Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol Sci 2010;116(1):8-22
  • Grosberg A, Nesmith AP, Goss JA, et al. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 2012;65(3):126-35
  • Jang K-J, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol 2013;5(9):1119
  • Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2011;13(1):55-72
  • Guzzardi MA, Domenici C, Ahluwalia A. Metabolic control through hepatocyte and adipose tissue cross-talk in a multicompartmental modular bioreactor. Tissue Eng Part A 2011;17(11-12):1635-42
  • Iori E, Vinci B, Murphy E, et al. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS One 2012;7(4):e34704
  • Imura Y, Yoshimura E, Sato K. Micro total bioassay system for oral drugs: evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal Sci 2012;28(3):197-7
  • Mahler GJ, Esch MB, Glahn RP, Shuler ML. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng 2009;104(1):193-205
  • Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 2010;10(4):446
  • Sung JH, Shuler ML. A micro cell culture analog (µCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 2009;9(10):1385
  • Zhang C, Zhao Z, Abdul Rahim NA, et al. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 2009;9(22):3185
  • van de Stolpe A, den Toonder J. Workshop meeting report Organs-on-Chips: human disease models. Lab Chip 2013;13(18):3449-70
  • Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012;13(11):713-26
  • Sung JH, Esch MB, Prot JM, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 2013;13(7):1201-12
  • Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006;6(12):1484-6
  • Zhou J, Ellis AV, Voelcker NH. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010;31(1):2-16
  • Bi H, Zhong W, Meng S, et al. Construction of a biomimetic surface on microfluidic chips for biofouling resistance. Anal Chem 2006;78(10):3399-405
  • Wu D, Zhao B, Dai Z, et al. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab Chip 2006;6(7):942-7
  • Wikswo JP, Block FE III, Cliffel DE, et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 2013;60(3):682-90
  • Resto PJ, Berthier E, Beebe DJ, Williams JC. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. Lab Chip 2012;12(12):2221-8
  • Moraes C, Labuz JM, Leung BM, et al. On being the right size: scaling effects in designing a human-on-a-chip. Integr Biol (Camb) 2013;5(9):1149-61
  • Weltin A, Slotwinski K, Kieninger J, et al. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 2014;14(1):138-46
  • Sung JH, Choi JR, Kim D, Shuler ML. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices. Biotechnol Bioeng 2009;104(3):516-25
  • Snippert HJ, Schepers AG, Delconte G, et al. Slide preparation for single-cell-resolution imaging of fluorescent proteins in their three-dimensional near-native environment. Nat Protoc 2011;6(8):1221-8
  • Cramer A, MacLaren R. Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 2013;13(2):139-51
  • Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011;470(7332):105-9
  • Unadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 2011;108(40):16565-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.