446
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Recent progress in tight junction modulation for improving bioavailability

, , &

Bibliography

  • Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993;123(6 Pt 2):1777-88
  • Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998;141(7):1539-50
  • Lal-Nag M, Morin PJ. The claudins. Genome Biol 2009;10(8):235
  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986;103(3):755-66
  • Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA 1991;88(8):3460-4
  • Balda MS, Gonzalez-Mariscal L, Matter K, et al. Assembly of the tight junction: the role of diacylglycerol. J Cell Biol 1993;123(2):293-302
  • Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 2004;117(Pt 1):19-29
  • van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006;68:403-29
  • Claude P, Goodenough DA. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 1973;58(2):390-400
  • Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Ann NY Acad Sci 2012;1258:115-24
  • Kurasawa M, Maeda T, Oba A, et al. Tight junction regulates epidermal calcium ion gradient and differentiation. Biochem Biophys Res Commun 2011;406(4):506-11
  • Kirschner N, Brandner JM. Barriers and more: functions of tight junction proteins in the skin. Ann NY Acad Sci 2012;1257:158-66
  • Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 2005;17(5):453-8
  • Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today 2005;10(6):395-408
  • Cereijido M, Contreras RG, Flores-Benítez D, et al. New diseases derived or associated with the tight junction. Arch Med Res 2007;38(5):465-78
  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 2001;6(7):357-66
  • Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 2001;281(2):C388-97
  • Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 1980;23(6):682-4
  • Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 2008;121(Pt 3):298-305
  • Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265-83
  • Karnaky KJ Jr. Electrophysiological assessment of epithelia. In: Stevenson BR, Waren JG, Paul DL, editors, Cell-cell interactions: a practical approach. IRL Press, Oxford; 1992. p. 257-74
  • Günzel D, Zakrzewski SS, Schmid T, et al. From TER to trans- and paracellular resistance: lessons from impedance spectroscopy. Ann NY Acad Sci 2012;1257:142-51
  • Krug SM, Fromm M, Günzel D. Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophys J 2009;97(8):2202-11
  • Ballal NV, Kundabala M, Bhat S, et al. A comparative in vitro evaluation of cytotoxic effects of EDTA and maleic acid: root canal irrigants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108(4):633-8
  • Ranaldi G, Marigliano I, Vespignani I, et al. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1). J Nutr Biochem 2002;13(3):157-67
  • Morgan DM, Clover J, Pearson JD. Effects of synthetic polycations on leucine incorporation, lactate dehydrogenase release, and morphology of human umbilical vein endothelial cells. J Cell Sci 1988;91(Pt 2):231-8
  • Scott Swenson E, Curatolo WJ. C) Means to enhance penetration. Adv Drug Deliv Rev 1992;8(1):39-92
  • Kondoh M, Takahashi A, Yagi K. Spiral progression in the development of absorption enhancers based on the biology of tight junctions. Adv Drug Deliv Rev 2012;64(6):515-22
  • Turner JR, Angle JM, Black ED, et al. PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol 1999;277(3 Pt 1):C554-62
  • Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 2011;68(12):653-60
  • Peti W, Nairn AC, Page R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J 2012;280(2):596-611
  • Carman AJ, Mills JH, Krenz A, et al. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 2011;31(37):13272-80
  • Umapathy NS, Fan Z, Zemskov EA, et al. Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement. Vascul Pharmacol 2010;52(5-6):199-206
  • Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010;25(1):16-26
  • Sharp CD, Hines I, Houghton J, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol 2003;285(6):H2592-8
  • Guo Y, Ramachandran C, Satpathy M, Srinivas SP. Histamine-induced myosin light chain phosphorylation breaks down the barrier integrity of cultured corneal epithelial cells. Pharm Res 2007;24(10):1824-33
  • Srinivas SP, Satpathy M, Guo Y, Anandan V. Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Vis Sci 2006;47(9):4011-18
  • Kuhlmann CRW, Gerigk M, Bender B, et al. Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro. Life Sci 2008;82(25-26):1281-7
  • Balda MS, González-Mariscal L, Contreras RG, et al. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 1991;122(3):193-202
  • Denker BM, Saha C, Khawaja S, Nigam SK. Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J Biol Chem 1996;271(42):25750-3
  • Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005;25(1):59-127
  • Broccatelli F, Cruciani G, Benet LZ, Oprea TI. BDDCS class prediction for new molecular entities. Mol Pharm 2012;9(3):570-80
  • Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012;2012:195727
  • Buchert M, Turksen K, Hollande F. Methods to examine tight junction physiology in cancer stem cells: TEER, paracellular permeability, and dilution potential measurements. Stem Cell Rev 2012;8(3):1030-4
  • Sanders SE, Madara JL, McGuirk DK, et al. Assessment of inflammatory events in epithelial permeability: a rapid screening method using fluorescein dextrans. Epithelial Cell Biol 1995;4(1):25-34
  • Veshnyakova A, Protze J, Rossa J, et al. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2010;2(6):1336-56
  • Veshnyakova A, Piontek J, Protze J, et al. Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J Biol Chem 2012;287(3):1698-708
  • Tscheik C, Blasig IE, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissuebarriers 2013;1(2):e24565
  • Del Vecchio G, Tscheik C, Tenz K, et al. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharm 2012;9(9):2523-33
  • Zwanziger D, Hackel D, Staat C, et al. A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 2012;9(6):1785-94
  • Wysolmerski RB, Lagunoff D. Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol 1991;261(1 Pt 1):C32-40
  • Tinsley JH, de Lanerolle P, Wilson E, et al. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am J Physiol Cell Physiol 2000;279(4):C1285-9
  • Straub JA, Akiyama A, Parmar P. In vitro plasma metabolism of RMP-7. Pharm Res 1994;11(11):1673-6
  • Shepro D, Morel NM. Pericyte physiology. FASEB J 1993;7:1031-8
  • Brinkmann U, Eichelbaum M. Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J 2001;1(1):59-64
  • Dean RL, Emerich DF, Hasler BP, Bartus RT. Cereport (RMP-7) increases carboplatin levels in brain tumors after pretreatment with dexamethasone. Neuro-oncol 1999;1(4):268-74
  • Mackic JB, Stins M, Jovanovic S, et al. Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers. Pharm Res 1999;16(9):1360-5
  • Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 1996;39(1):125-33; discussion 133-4
  • Elliott PJ, Hayward NJ, Dean RL, et al. Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res 1996;56(17):3998-4005
  • Bartus RT, Elliott P, Hayward N, et al. Permeability of the blood brain barrier by the bradykinin agonist, RMP-7: evidence for a sensitive, auto-regulated, receptor-mediated system. Immunopharmacology 1996;33(1-3):270-8
  • Ford J, Osborn C, Barton T, Bleehen NM. A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. Eur J Cancer 1998;34(11):1807-11
  • Warren KE, Patel MC, Aikin AA, et al. Phase I trial of lobradimil (RMP-7) and carboplatin in children with brain tumors. Cancer Chemother Pharmacol 2001;48(4):275-82
  • Packer RJ, Krailo M, Mehta M, et al. A Phase I study of concurrent RMP-7 and carboplatin with radiation therapy for children with newly diagnosed brainstem gliomas. Cancer 2005;104(9):1968-74
  • Gregor A, Lind M, Newman H, et al. Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group. J Neurooncol 1999;44(2):137-45
  • Prados MD, Schold SC JR SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncol 2003;5(2):96-103
  • Emerich DF, Snodgrass P, Dean R, et al. Enhanced delivery of carboplatin into brain tumours with intravenous Cereport (RMP-7): dramatic differences and insight gained from dosing parameters. Br J Cancer 1999;80(7):964-70
  • Warren K, Jakacki R, Widemann B, et al. Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children's Oncology Group. Cancer Chemother Pharmacol 2006;58(3):343-7
  • Di Pierro M, Lu R, Uzzau S, et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 2001;276(22):19160-5
  • Song K, Fasano A, Eddington ND. Effect of the six-mer synthetic peptide (AT1002) fragment of zonula occludens toxin on the intestinal absorption of cyclosporin A. Int J Pharm 2008;351(1-2):8-14
  • Fasano A, Baudry B, Pumplin DW, et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 1991;88(12):5242-6
  • Fasano A, Fiorentini C, Donelli G, et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 1995;96(2):710-20
  • Fasano A, Uzzau S, Fiore C, Margaretten K. The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 1997;112(3):839-46
  • Fasano A, et al. P0517 Zot/Zonulin-mediated regulation of intestinal tight junctions involves the proteinase-activated receptor 2 (Par-2). J Pediatr Gastroenterol Nutr 2004;39:253-4
  • Cox DS, Gao H, Raje S, et al. Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. Eur J Pharm Biopharm 2001;52(2):145-50
  • Cox DS, Raje S, Gao H, et al. Enhanced permeability of molecular weight markers and poorly bioavailable compounds across caco-2 cell monolayers using the absorption enhancer, zonula occludens toxin. Pharm Res 2002;19(11):1680-8
  • Karyekar CS, Fasano A, Raje S, et al. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharm Sci 2003;92(2):414-23
  • Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 1997;99(6):1158-64
  • Salama NN, Fasano A, Lu R, Eddington ND. Effect of the biologically active fragment of zonula occludens toxin, delta G, on the intestinal paracellular transport and oral absorption of mannitol. Int J Pharm 2003;251(1-2):113-21
  • Salama NN, Fasano A, Thakar M, Eddington ND. The effect of ΔG on the transport and oral absorption of macromolecules. J Pharm Sci 2004;93(5):1310-19
  • Salama NN, Fasano A, Thakar M, Eddington ND. The impact of ΔG on the oral bioavailability of low bioavailable therapeutic agents. J Pharmacol Exp Ther 2005;312(1):199-205
  • Menon D, Karyekar CS, Fasano A, et al. Enhancement of brain distribution of anticancer agents using ΔG, the 12 kDa active fragment of ZOT. Int J Pharm 2005;306(1–2):122-31
  • Goldblum SE, Rai U, Tripathi A, et al. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J 2011;25(1):144-58
  • Li M, Oliver E, Kitchens KM, et al. Structure–activity relationship studies of permeability modulating peptide AT-1002. Bioorg Med Chem Lett 2008;18(16):4584-6
  • Song K, Eddington N. The influence of stabilizer and bioadhesive polymer on the permeation-enhancing effect of AT1002 in the nasal delivery of a paracellular marker. Arch Pharm Res 2012;35(2):359-66
  • Gopalakrishnan S, Pandey N, Tamiz AP, et al. Mechanism of action of ZOT-derived peptide AT-1002, a tight junction regulator and absorption enhancer. Int J Pharm 2009;365(1–2):121-30
  • Song K, Eddington ND. The influence of AT1002 on the nasal absorption of molecular weight markers and therapeutic agents when co-administered with bioadhesive polymers and an AT1002 antagonist, AT1001. J Pharm Pharmacol 2012;64(1):30-9
  • Paterson BM, Lammers KM, Arrieta MC, et al. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 2007;26(5):757-66
  • Hollenberg MD. Proteinase-mediated signaling: Proteinase-activated receptors (PARs) and much more. Life Sci 2003;74(2–3):237-46
  • Hollenberg MD, Oikonomopoulou K, Hansen KK, et al. Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 2008;389(6):643-51
  • Hollenberg MD. Physiology and pathophysiology of proteinase-activated receptors (PARs): proteinases as hormone-like signal messengers: PARs and more. J Pharm Sci 2005;97(1):8-13
  • Barry GD, Suen JY, Le GT, et al. Novel agonists and antagonists for human protease activated receptor 2. J Med Chem 2010;53(20):7428-40
  • Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 2000;97(10):5255-60
  • Kawabata A, Oono Y, Yonezawa D, et al. 2-Furoyl-LIGRL-NH2, a potent agonist for proteinase-activated receptor-2, as a gastric mucosal cytoprotective agent in mice. Br J Pharmacol 2005;144(2):212-19
  • Cenac N, Chin AC, Garcia-Villar R, et al. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol 2004;558(3):913-25
  • Song K, Eddington N. The impact of AT1002 on the delivery of ritonavir in the presence of bioadhesive polymer, carrageenan. Arch Pharm Res 2012;35(5):937-43
  • Uchida T, Kanazawa T, Takashima Y, Okada H. Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem Pharm Bull 2011;59(2):196-201
  • Song K, Fasano A, Eddington ND. Enhanced nasal absorption of hydrophilic markers after dosing with AT1002, a tight junction modulator. Eur J Pharm Biopharm 2008;69(1):231-7
  • Leffler DA, Kelly CP, Abdallah HZ, et al. A Randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol 2012;107(10):1554-62
  • Kelly CP, Green PHR, Murray JA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 2013;37(2):252-62
  • Cui K, Chen S-C, Houston ME, Quay SC. Tight junction modulator peptide PN159 for enhanced mucosal delivery of therapeutic compounds, United States Patent Application. US2006/0062758A1; 2006
  • Johnson PH, Quay SC. Advances in nasal drug delivery through tight junction technology. Expert Opin Drug Deliv 2005;2(2):281-98
  • Chen S, Eiting K, Cui K, et al. Therapeutic utility of a novel tight junction modulating peptide for enhancing intranasal drug delivery. J Pharm Sci 2006;95(6):1364-71
  • Cui K, Chen Quay S-C, Fry KT. Tight junction modulating peptides for enhanced mucosal delivery of therapeutic compounds, United States Patent Application. US2007/0154449A1; 2007
  • Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 2009;1788(4):892-910
  • A Study to Evaluate the Effect of Nasal Insulin on Postprandial Glycemic Control in Type 2 Diabetic Patients. Available from: http://clinicaltrials.gov/ct2/show/record/NCT00624767
  • A Study of Nasal PYY3-36 and Placebo for Weight Loss in Obese Subjects. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00537420?term=NCT00537420&rank=1
  • Kirschner N, Bohner C, Rachow S, Brandner JM. Tight junctions: is there a role in dermatology? Arch Dermatol Res 2010;302(7):483-93
  • Furuse M, Hata M, Furuse K, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002;156(6):1099-111
  • Clayburgh DR, Rosen S, Witkowski ED, et al. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem 2004;279(53):55506-13
  • Grindrod S, Suy S, Fallen S, et al. Effects of a fluorescent myosin light chain phosphatase inhibitor on prostate cancer cells. Front Oncol 2011;1:27
  • Kato-Nakano M, Suzuki M, Kawamoto S, et al. Characterization and evaluation of the antitumour activity of a dual-targeting monoclonal antibody against claudin-3 and claudin-4. Anticancer Res 2010;30(11):4555-62
  • Sanovich E, Bartus RT, Friden PM, et al. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 1995;705(1-2):125-35
  • Elliott PJ, Mackic JB, Graney WF, et al. RMP-7, a bradykinin agonist, increases permeability of blood-ocular barriers in the guinea pig. Invest Ophthalmol Vis Sci 1995;36(12):2542-7
  • Emerich DF, Snodgrass P, Pink M, et al. Central analgesic actions of loperamide following transient permeation of the blood brain barrier with Cereport (RMP-7). Brain Res 1998;801(1-2):259-66
  • Barth RF, Yang W, Bartus RT, et al. Enhanced delivery of boronophenylalanine for neutron capture therapy of brain tumors using the bradykinin analog Cereport (Receptor-Mediated Permeabilizer-7). Neurosurgery 1999;44(2):351-9; discussion 359-60
  • Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 1996;142(1):14-28
  • Inamura T, Nomura T, Bartus RT, Black KL. Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. J Neurosurg 1994;81(5):752-8
  • Emerich DF, Dean RL, Marsh J, et al. Intravenous cereport (RMP-7) enhances delivery of hydrophilic chemotherapeutics and increases survival in rats with metastatic tumors in the brain. Pharm Res 2000;17(10):1212-19
  • Bartus RT, Snodgrass P, Dean RL, et al. Evidence that Cereport's ability to increase permeability of rat gliomas is dependent upon extent of tumor growth: implications for treating newly emerging tumor colonies. Exp Neurol 2000;161(1):234-44
  • Bartus RT, Snodgrass P, Marsh J, et al. Intravenous cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels, and enhances survival. J Pharmacol Exp Ther 2000;293(3):903-11
  • Cloughesy TF, Black KL, Gobin YP, et al. Intra-arterial Cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery 1999;44(2):270-8; discussion 278-9
  • Warren K, Gervais A, Aikin A, et al. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother Pharmacol 2004;54(3):206-12
  • Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001;91(4):1487-500
  • Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2007;120(20):3491-9
  • Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003;4(3):225-36
  • Eto M, Ohmori T, Suzuki M, et al. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem 1995;118(6):1104-7
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86(1):279-367

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.