772
Views
74
CrossRef citations to date
0
Altmetric
Reviews

Novel approaches for the design and discovery of quorum-sensing inhibitors

, &

Bibliography

  • Jiang T, Minyong L. Quorum sensing inhibitors: a patent review. Exp Opin Ther Pat 2013;23:867-94
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994;176:269-75
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003;2:114-22
  • Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 2013;13:699-706
  • Tomasz A, Hotchkiss RD. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci USA 1964;51:480-7
  • Nealson KH, Platt T, Hastings JVV. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 1970;104:313-22
  • Amara N, Krom BP, Kaufmann GF, et al. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 2011;111:195-208
  • Williams P. Quorum sensing: an emerging target for antibacterial chemotherapy. Exp Opin Ther Targets 2002;6:257-74
  • Zhang LH, Dong YH. Quorum sensing and signal interference: diverse implications. Mol Microbiol 2004;53:1563-71
  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv 2013;31:224-45
  • Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003;112:1300-7
  • Jacobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 2012;56:2314-25
  • Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Intern J Med Microbiol 2006;296:149-61
  • Kaufmann GF, Park J, Janda KD. Bacterial quorum sensing: a new target for anti-infective immunotherapy. Exp Opin Biol Ther 2008;8:719-24
  • Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 2013;8:68-83
  • Chung J, Goo E, Yu S, et al. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci USA 2011;108:12089-94
  • Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 2005;187:4707-19
  • Li X, Chu S, Feher VA, et al. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J Med Chem 2003;46:5663-73
  • Gutierrez JA, Crowder T, Rinaldo-Matthis A, et al. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 2009;5:251-7
  • Longshaw AI, Adanitsch F, Gutierrez JA, et al. Design and synthesis of potent "sulfur-free" transition state analogue inhibitors of 5'-methylthioadenosine nucleosidase and 5'-methylthioadenosine phosphorylase. J Med Chem 2010;53:6730-46
  • Schramm VL. Methods and compositions for treating bacterial infections by inhibiting quorum sensing. US20110190265; 2011
  • Calfee MW, Coleman JP, Pesci EC. Interference with pseudomonas quinolone signal synthesis inhibits virulence factor expression by pseudomonas aeruginosa. Proc Natl Acad Sci USA 2001;98:11633-7
  • Zhou L, Zheng H, Tang Y, et al. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 2013;35:631-7
  • Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 2011;37:121-40
  • Chen F, Gao Y, Chen X, et al. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 2013;14:17477-500
  • Migiyama Y, Kaneko Y, Yanagihara K, et al. Efficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas aeruginosa in a mouse model of acute pneumonia. Antimicrob Agents Chemother 2013;57:3653-8
  • Papaioannou E, Wahjudi M, Nadal-Jimenez P, et al. Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 2009;53:4891-7
  • Wahjudi M, Murugappan S, van Merkerk R, et al. Development of a dry, stable and inhalable acyl–homoserine–lactone–acylase powder formulation for the treatment of pulmonary pseudomonas aeruginosa infections. Eur J Pharm Sci 2013;48:637-43
  • Yang F, Wang LH, Wang J, et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 2005;579:3713-17
  • Camps J, Pujol I, Ballester F, et al. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in gram-negative bacteria. Antimicrob Agents Chemother 2011;55:1325-31
  • Estin ML, Stoltz DA, Zabner J. Paraoxonase 1, quorum sensing, and Pseudomonas aeruginosa infection: a novel model. Adv Exp Med Biol 2010;660:183-93
  • Devarajan A, Bourquard N, Grijalva VR, et al. Role of PON2 in innate immune response in an acute infection. Mol Genet Metab 2013;110:362-70
  • Chowdhary PK, Keshavan N, Nguyen HQ, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 2007;46:14429-37
  • Uroz S, Chhabra SR, Camara M, et al. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 2005;151:3313-22
  • Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J, et al. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 2011;6:e26278
  • Miyairi S, Tateda K, Fuse ET, et al. Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 2006;55:1381-7
  • Debler EW, Kaufmann GF, Kirchdoerfer RN, et al. Crystal structures of a quorum-quenching antibody. J Mol Biol 2007;368:1392-402
  • Park J, Jagasia R, Kaufmann GF, et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 2007;14:1119-27
  • Kaufmann GF, Park J, Mee JM, et al. The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol 2008;45:2710-14
  • Kirchdoerfer RN, Garner AL, Flack CE, et al. Structural basis for ligand recognition and discrimination of a quorum-quenching antibody. J Biol Chem 2011;286:17351-8
  • Palliyil S, Downhama C, Broadbent I, et al. High sensitivity monoclonal antibodies specific for homoserine lactones protect mice from lethal Pseudomonas aeruginosa infections. Appl Environ Microbiol 2014;80:462-9
  • Hirakawa H, Harwood CS, Pechter KB, et al. Antisense RNA that affects Rhodopseudomonas palustris quorum-sensing signal receptor expression. Proc Natl Acad Sci USA 2012;109:12141-6
  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 2013;77:73-111
  • Gordon CP, Williams P, Chan WC. Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem 2013;56:1389-404
  • Hall PR, Elmore BO, Spang CH, et al. Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr type III Staphylococcus aureus quorum-sensing. PLOS Pathog 2013;9:e1003166
  • Mansson M, Nielsen A, Kjærulff L, et al. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine photobacterium. Mar Drugs 2011;9:2537-52
  • Kiran MD, Adikesavan NV, Cirioni O, et al. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 2008;73:1578-86
  • Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009;12:182-91
  • de Kievit T, Seed PC, Nezezon J, et al. RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J Bacteriol 1999;181:2175-84
  • Rampioni G, Schuster M, Greenberg EP, et al. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 2007;66:1557-65
  • Liang H, Duan J, Sibley CD, et al. Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol 2011;60:22-34
  • Seet Q, Zhang LH. Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 2011;80:951-65
  • Fan H, Dong Y, Wu D, et al. QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing. Proc Natl Acad Sci USA 2013;110:20765-70
  • Chugani SA, Whiteley M, Lee KM, et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2001;98:2752-7
  • Siehnel R, Traxler B, An DD, et al. A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2010;107:7916-21
  • Gupta R, Schuster M. Negative regulation of bacterial quorum sensing tunes public goods cooperation. ISME J 2013;7:2159-68
  • Weng LX, Yang YX, Zhang YQ, et al. A new synthetic ligand that activates QscR and blocks antibiotic-tolerant biofilm formation in pseudomonas aeruginosa. Appl Microbiol Biotechnol 2013. [Epub ahead of print]
  • Lesic B, Lépine F, Déziel E, et al. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 2007;3:1229-39
  • Lu C, Maurer CK, Kirsch B, et al. Overcoming the unexpected functional inversion of a PqsR antagonist in pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. Angew Chem Int Ed Engl 2014;53:1109-12
  • Folch B, Déziel E, Doucet N. Systematic mutational analysis of the putative hydrolase PqsE: toward a deeper molecular understanding of virulence acquisition in Pseudomonas aeruginosa. PLoS One 2013;8:e73727
  • Lu C, Kirsch B, Zimmer C, et al. Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in pseudomonas aeruginosa. Chem Biol 2012;19:381-90
  • Ilangovan A, Fletcher M, Rampioni G, et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 2013;9:e1003508
  • Décanis N, Tazi N, Correia A, et al. Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 2011;5:119-26
  • Cugini C, Calfee MW, Farrow JM III, et al. Farnesol, a common sesquiterpene, inhibits PQS production in pseudomonas aeruginosa. Mol Microbiol 2007;65:896-906
  • Jabra-Rizk MA, Meiller TF, James CE, et al. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 2006;50:1463-9
  • Méar JB, Kipnis E, Faure E, et al. Candida albicans and Pseudomonas aeruginosa interactions: more than an opportunistic criminal association? Med Mal Infect 2013;43:146-51
  • Bhattacharyya S, Agrawal A, Knabe C, et al. Sol-gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus. Biomaterials 2014;35:509-17
  • Sabbah M, Bernollin M, Doutheau A, et al. A new route towards fimbrolide analogues: importance of the exomethylene motif in LuxR dependent quorum sensing inhibition. Med Chem Commun 2013;4:363-6
  • Kutty SK, Barraud N, Pham A, et al. Design, synthesis and evaluation of fimbrolide-nitric oxide donor hybrids as antimicrobial agents. J Med Chem 2013;56:9517-29
  • Tsuchikama K, Zhu J, Lowery CA, et al. C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. J Am Chem Soc 2012;134:13562-4
  • Praneenararat T, Palmer AG, Blackwell HE. Chemical methods to interrogate bacterial quorum sensing pathways. Org Biomol Chem 2012;10:8189-99
  • Desouki SE, Nishiguchi K, Zendo T, et al. High-throughput screening of inhibitors targeting Agr/Fsr quorum sensing in Staphylococcus aureus and Enterococcus faecalis. Biosci Biotechnol Biochem 2013;77:923-7
  • Christensen QH, Groveb TL, Booker SJ, et al. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc Natl Acad Sci USA 2013;110:13815-20
  • Tan SY-Y, Chua S-L, Chen Y, et al. Identification of five structurally unrelated quorum-sensing inhibitors of pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 2013;57:5629-41
  • Skovstrup S, Le Quement ST, Hansen T, et al. Identification of LasR ligands through a virtual screening approach. Chem Med Chem 2013;8:157-63
  • Weber M, Buceta J. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol 2013;7:6
  • Huang Y, Zeng Y, Yu Z, et al. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation. Bioresour Technol 2013;148:311-16
  • Schaadt NS, Steinbach A, Hartmann RW, et al. Rule-based regulatory and metabolic model for Quorum sensing in P. aeruginosa. BMC Syst Biol 2013;7:81
  • Audretsch C, Lopez D, Srivastava M, et al. A semi-quantitative model of quorum-sensing in Staphylococcus aureus, approved by microarray meta-analyses and tested by mutation studies. Mol BioSyst 2013;9:2665-80
  • Sahner JH, Brengel C, Storz MP, et al. Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design. J Med Chem 2013;56:8656-64
  • Hebert CG, Gupta A, Fernandes R, et al. Biological nanofactories target and activate epithelial cell surfaces for modulating bacterial quorum sensing and interspecies signaling. ACS Nano 2010;4:6923-31
  • Gupta A, Terrell JL, Fernandes R, et al. Encapsulated fusion protein confers ‘‘sense and respond’’ activity to chitosan-alginate capsules to manipulate bacterial quorum sensing. Biotechnol Bioeng 2013;110:552-62
  • Gomes J, Grunau A, Lawrence AK, et al. Bioinspired, releasable quorum sensing modulators. Chem Commun 2013;49:155-7
  • Connell JL, Ritschdorff ET, Whiteley M, et al. 3D printing of microscopic bacterial communities. Proc Natl Acad Sci USA 2013;110:18380-5
  • Gupta S, Bram EE, Weiss R. Genetically programmable pathogen sense and destroy. ACS Synth Biol 2013. [Epub ahead of print]
  • Guglielmini J, Van Melderen L. Bacterial toxin-antitoxin systems. Mob Genet Elements 2011;1:283-90
  • Kolodkin-Gal I, Hazan R, Gaathon A, et al. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 2007;318:652-5
  • Kolodkin-Gal I, Sat B, Keshet A, et al. The communication factor EDF and the toxin-antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol 2008;6:e319
  • Kumar S, Kolodkin-Gal I, Engelberg-Kulka H. Novel quorum-sensing peptides mediating interspecies bacterial cell death. mBio 2013;4:e00314-13
  • Givskov M, de Nys R, Manefield M, et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 1996;178:6618-22
  • Koh CL, Sam CK, Yin WF, et al. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 2013;13:6217-28
  • Pan J, Ren D. Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat 2009;19:1581-601
  • Romero M, Acuña L, Otero A. Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 2012;6:2-12
  • Skindersoe ME, Alhede M, Phipps R, et al. Effects of antibiotics on quorum sensing of pseudomonas aeruginosa. Antimicrob Agents Chemother 2008;52:3648-63
  • Defoirdt T, Pande GS, Baruah K, et al. The apparent quorum-sensing inhibitory activity of pyrogallol is a side effect of peroxide production. Antimicrob Agents Chemother 2013;57:2870-3
  • Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 2013;21:619-24
  • Dockery JD, Keener JP. A mathematical model for quorum sensing in pseudomonas aeruginosa. Bull Math Biol 2001;63:95-116
  • Anguige K, King JR, Ward JP. A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 2006;203:240-76
  • Janakiraman V, Englert D, Jayaraman A, et al. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng 2009;37:1206-16
  • Fozard JA, Lees M, King JR, et al. Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 2012;109:105-14
  • Beckmann BE, Knoester DB, Connelly BD, et al. Evolution of resistance to quorum quenching in digital organisms. Artif Life 2012;18:291-310
  • Maeda T, García-Contreras R, Pu M, et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J 2012;6:493-501
  • Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 2013. [Epub ahead of print]
  • García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, et al. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis 2013;68:8-11
  • Köhler T, Perron GG, Buckling A, et al. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 2010;6:e1000883
  • Harraghy N, Kerdudou S, Herrmann M. Quorum-sensing systems in staphylococci as therapeutic tergets. Anal Bioanal Chem 2007;387:437-44
  • Høyland-Kroghsbo NM, Maerkedahl RB, Svenningsen SL. A quorum-sensing-induced bacteriophage defense mechanism. mBio 2013;4:e00362-12
  • Michael-Gayego A, Dan-Goor M, Jaffe J, et al. Characterization of sil in invasive group A and G streptococci: antibodies against bacterial pheromone peptide SilCR result in severe infection. Infect Immun 2013;81:4121-7
  • Sturbelle RT, Conceição RC, Da Rosa MC, et al. The use of quorum sensing to improve vaccine mmune response. Vaccine 2014;32:90-5
  • Rumbaugh KP, Diggle SP, Watters CM, et al. Quorum sensing and the social evolution of bacterial virulence. Curr Biol 2009;19:341-5
  • Köhler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci USA 2009;106:6339-44
  • Diggle SP. Microbial communication and virulence: lessons from evolutionary theory. Microbiology 2010;156:3503-12
  • Harrison F. Bacterial cooperation in the wild and in the clinic: are pathogen social behaviours relevant outside the laboratory? Bioessays 2013;35:108-12
  • Zhu J, Kaufmann GF. Quo vadis quorum quenching? Curr Opin Pharmacol 2013;13:688-98
  • Davies J. How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 2011;15:5-10
  • Gwynn MN, Portnoy A, Rittenhouse SF, et al. Challenges of antibacterial discovery revisited. Ann NY Acad Sci 2010;1213:5-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.