291
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Epigenetic approaches for bipolar disorder drug discovery

Bibliography

  • Martinovich K, Schloessor RJ, Manji HK. Bipolar disorder: from genes to behaviour pathways. J Clin Invest 2009;119:726-36
  • Kupfer DJ. The increasing medical burden in bipolar disorder. JAMA 2005;293:2528-30
  • Sadock BJ, Sadock VA. Kaplan &Sadock’s synopsis of psychiatry. Lippincott Williams & Wilkins, Philadelphia, PA, USA; 2007
  • Crow TJ. The XY gene hypothesis of psychosis: origins and current status. Am J Med Genet B 2013;162B(800):24
  • Peedicayil J. The role of epigenetics in mental disorders. Indian J Med Res 2007;126:105-11
  • Peedicayil J. Epigenetic management of major psychosis. Clin Epigenetics 2011;2:249-56
  • Allis CD, Jenuwein T, Reinberg D. Overview and concepts. In: Allis CD, Jenuwein T, Reinberg D, editors. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 2007. p. 23-61
  • Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity 2010;105:4-13
  • Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem 2012;81:97-117
  • Kouzarides T, Berger SL. Chromatin modifications and their mechanisms of action. In: Allis CD, Jenuwein T, Reinberg D, editors. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 2007. p. 191-209
  • Collins LJ, Schönfeld B, Chen XS. The epigenetics of non-coding RNA. In: Tollefsbol T, editor. Handbook of epigenetics: the new molecular and medical genetics. Elsevier, SD, USA; 2011. p. 49-61
  • Plomin R, Davis OSP. The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 2009;50:63-71
  • Peedicayil J. Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics 2008;9:1785-6
  • Peedicayil J. Epigenetic therapy – a new development in pharmacology. Indian J Med Res 2006;123:17-24
  • Peedicayil J. The role of DNA methylation in the pathogenesis and treatment of cancer. Curr Clin Pharmacol 2012;7:333-40
  • Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors. Current status and overview of recent clinical trials. Drugs 2009;69:1911-34
  • Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci 2013;124:651-62
  • Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5’untranslated region. Neuropharmacology 2011;60:1075-87
  • Hauke J, Riessland M, Lunke S, et al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum Mol Genet 2009;18:304-17
  • Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 2010;77:126-35
  • Guidotti A, Auta J, Chen Y, et al. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2011;60:1007-16
  • Alhosin M, Sharif T, Mousli M, et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res 2011;30:41
  • Bieliauskas AV, Pflum MKH. Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 2008;37:1402-13
  • Fraczek J, Vanhaecke T, Rogiers V. Toxicological and metabolic considerations for histone deacetylase inhibitors. Expert Opin Drug Metab Toxicol 2013;9:441-57
  • Spannhoff A, Hauser A-T, Heinke R, et al. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 2009;4:1568-82
  • Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011;18:1104-10
  • Fuso A, Seminara L, Cavallaro RA, et al. S-adenosylmethionine/homocysteine alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Moll Cell Neurosci 2005;28:195-204
  • Stahl SM. Novel therapeutics for depression: L-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS Spectr 2007;12:739-44
  • Lieber CS, Packer L. S-adenosylmethionine: molecular, biological, and clinical aspects –An introduction. Am J Clin Nutr 2002;76:1148S-50S
  • Post RM, Altshuller LL. Mood disorders: treatment of bipolar disorders. In: Sadock B, Sadock VA, Ruiz P, editors. Kaplan & Sadock’s comprehensive textbook of psychiatry. Lippicott Williams & Wilkins, Philadelphia, PA, USA; 2009. p. 1743-813
  • Meyer JM. Pharmacotherapy of psychosis and mania. In: Brunton LL, Chabner B, Knollman B, editors. The pharmacological basis of therapeutics. MceGraw-Hill, NY, USA; 2011. p. 417-55
  • Geddes JR, Miklowitz DJ. Treatment of bipolar disorder. Lancet 2013;381:1672-82
  • Meltzer H. Antipsychotics and lithium. In: Katzung B, Masters SB, Trevor AJ, editors. Basic and clinical pharmacology. McGraw-Hill, New Delhi, India; 2012. p. 487-507
  • Belmaker RH. Bipolar disorder. N Engl J Med 2004;351:476-86
  • Perlis RH, Ostacher MJ, Patel JK, et al. Predictors of recurrence in bipolar disorder: primary outcomes from the systematic-treatment enhancement program for bipolar disorder (STEP-BD). Am J Psychiatry 2006;163:217-24
  • Gitlin M. Treatment-resistant bipolar disorder. Mol Psychiatry 2006;11:227-40
  • Poon SH, Sum MY, Kuswanto CN, Baldessarini RJ. Evidence-based options for treatment-resistant adult bipolar disorder. Bipolar Disord 2012;14:573-84
  • Bauer M, Beaulieu BM, Dunner DL, et al. Rapid cycling bipolar disorder-Diagnostic concepts. Bipolar Disord 2008;10:153-62
  • Dunner DL, Fieve RR. Clinical factors in lithium carbonate prophylaxis failure. Arch Gen Psychiatry 1974;30:229-33
  • Lee S, Tsang A, Kessler RC, et al. Rapid-cycling bipolar disorder: cross-national community study. Br J Psychiatry 2010;196:217-25
  • Latalova K, Prasko J, Diveky T, Velartova H. Cognitive impairment in bipolar disorder. Biomed Pap Med FacUniv 2011;155:19-26
  • da Silva J, Goncalves-Pereira M, Xavier M, Mukaetova-Ladinska M. Affective disorders and risk of developing dementia: systematic review. Br J Psychiatry 2013;202:177-86
  • Quraishi S, Frangou S. Neuropsychology of bipolar disorder: a review. J Affect Disord 2002;72:209-26
  • Guidotti A, Auta J, Davis JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. A post-mortem brain study. Arch Gen Psychiatry 2000;57:1061-9
  • Veldic M, Guidotti A, Maloku E, et al. In psychosis, cortical interneurons overexpress DNA-methyltransferase1. Proc Natl Acad Sci USA 2005;102:2152-7
  • Veldic M, Kadriu B, Maloku E, et al. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res 2007;91:51-61
  • Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008;82:696-711
  • Kaminsky Z, Tochugi M, Jia P, et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry 2012;17:728-40
  • Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2012;2:e132
  • Tang B, Dean B, Thomas EA. Disease-and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 2011;1:e64
  • Zhao C, Wang F, Pun FW, et al. Epigenetic regulation on GABRB2 isoforms expression: developmental variations and disruptions in psychiatric disorders. Schizophr Res 2012;134:260-6
  • Banigan MG, Kao PF, Kozubek JA, et al. Differential expression of exosomal microRNAs in prefrontal cortices of bipolar disorder patients. PLoS One 2013;8:e48814
  • Moreau MP, Bruse SE, David-Rus R, et al. Altered microRNA expression profiles in post-mortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry 2011;69:188-93
  • Kim AH, Reimers M, Maher B, et al. MicroRNA expression in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 2010;124:183-91
  • Dempster EL, Pidsley R, Schalkwyk LC, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011;20:4786-96
  • Nohesara S, Ghadirivasfi M, Mostafavi S, et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 2011;45:1432-8
  • Carrard A, Salzmann A, Malafosse A, et al. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord 2011;132:450-3
  • D’Addario C, Dell’Osso B, Palazzo MC, et al. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology 2012;37:1647-55
  • Ghadirivasfi M, Nohesara S, Ahmadkhaniha H-R, et al. Hypomethylation of the serotonin receptor type-2A gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia or bipolar disorder. Am J Med Genet 2011;156B:536-45
  • Gavin DP, Kartan S, Chase K, et al. Histone deacetylase inhibitors and candidate gene expression: an in vivo and in vitro approach to studying chromatin remodeling in a clinical population. J Psychiatr Res 2009;43:870-6
  • Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res 2010;44:263-70
  • Abe N, Uchida S, Otsuki K, et al. Altered sirtuin deacetylase gene expression in patients with a mood disorder. J Psychiatr Res 2011;45:1106-12
  • Rong H, Liu TB, Yang KJ, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 2011;45:92-5
  • Chiu C-T, Wang Z, Hunsberger JG, Chuang D-M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013;65:105-42
  • Phiel CJ, Zhang F, Huang EY, et al. Histone deacatylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001;276:36734-41
  • Machado-Vieira R, Ibrahim L, Zarate CA. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Ther 2011;17:699-704
  • Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci 2007;64:2090-103
  • Chen G, Yuan P, Hawver DB, et al. Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology 1997;16:238-45
  • Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res 2013;47:1204-14
  • Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009;34:1395-405
  • Chen H, Wang N, Burmeister M, et al. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropschopharmacol 2009;12:975-81
  • Zimmermann N, Zschocke J, Perisic T, et al. Antidepressants inhibit DNA methyltransferase1 through reducing G9a levels. Biochem J 2012;448:93-102
  • Guidotti A, Dong E, Kundakovic M, et al. Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodelling. Trends Pharmacol Sci 2009;30:55-60
  • Yasuda S, Liang MH, Marinova Z, et al. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 2009;14:51-9
  • Moretti M, Valvassori SS, Varela RB, et al. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav Pharmacol 2011;22:766-72
  • Schroeder FA, Lewis MC, Fass DM, et al. A selective HDAC1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behaviour in two mood-related tests. PLoS ONE 2013;8:e71323
  • Lipinski JF, Cohen BM, Frankenburg F, et al. Open trial of S-adenosylmethionine for treatment of depression. Am J Psychiatry 1984;141:448-50
  • Carney MW, Chary YK, Bottiglieri T, et al. Switch mechanism in affective illness and oral S-adenosylmethionine. Br J Psychiatry 1987;150:724-5
  • Klein DF. The loss of serendipity in psychopharmacology. JAMA 2008;299:1063-5
  • Moncrieff J, Hopker S, Thomas P. Psychiatry and the pharmaceutical industry: who pays the piper? Psychiatric Bull 2005;29:84-5
  • Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014;9:523-6
  • Malvaez M, McQuown SC, Rogge GA, et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behaviour in a persistent manner. Proc Natl Acad Sci USA 2013;110:2647-52
  • Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res 2010;44:263-70
  • Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008;7:854-68
  • Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 2006;15:3132-45
  • Maloku E, Covelo IR, Hanbauer I. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci USA 2010;107:4407-11
  • Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry 2012;2:e159
  • Cruceanu C, Alda M, Nagy C, et al. H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol 2013;16:289-99
  • Rosa A, Picchioni MM, Kalidindi S, et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet 2008;147B:459-62
  • Kuratomi G, Iwamoto K, Bundo M, et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 2008;13:429-41
  • Bromberg A, Bersudsky Y, Levine J, Agam G. Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord 2009;118:234-9
  • Sugawara H, Iwamoto K, Bundo M, et al. Hypermethylation of serotonin transporter gene in bipolar disorder detected by epigenome analysis of discordant monozygotic twins. Transl Psychiatry 2011;1:e24
  • Perroud N, Dayer A, Piguet C, et al. Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. Br J Psychiatry 2014;204:30-5
  • Huzayyin AA, Andreazza AC, Turecki G, et al. Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol 2014;17:561-9
  • Lauterbach EC. Neuroprotective effects of psychotropic drugs in Huntington’s disease. Int J Mol Sci 2013;14:22558-603
  • Mitchell PB. Therapeutic drug monitoring of psychotropic medications. Br J Clin Pharmacol 2000;49:303-12
  • Kanai H, Sawa A, Chen RW, et al. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J 2004;4:336-44
  • Sharma RP, Rosen C, Karten S, et al. Valproic acid and chromatin remodelling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res 2006;88:227-31
  • Kurita M, Holloway T, Garcia-Bea A, et al. HDAC2 regulated atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 2012;15:1245-54
  • Dong E, Grayson DR, Guidotti A, et al. Antipsychotic subtypes can be characterized by differences in their ability to modify GABAergic promoter methylation. Epigenomics 2009;1:201-11
  • Farde L, Wiesel FA, Halldin C, Sedvall G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 1988;45:71-6
  • Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression. Nat Neurosci 2006;9:519-25
  • Réus GZ, Abelaira HM, dos Santos MA, et al. Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav Brain Res 2013;256:451-6
  • Covington HE, Vialou VF, LaPlant Q, et al. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci Lett 2011;493:122-6
  • Jannuzzi G, Gatti G, Magni P, et al. Plasma concentrations of the enantiomers of fluoxetine and nonfluoxetine: sources of variability and preliminary observations on relations with clinical response. Ther Drug Monit 2002;24:616-27
  • Simonini MV, Camargo LM, Dong E, et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 2006;103:1587-92
  • Stertz L, Fries GR, Aguiar BW, et al. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev Bras Psiquiatr 2013;36:39-46
  • Resende WR, Valvassori SS, Reus GZ, et al. Effects of sodium butyrate in animal models of mania and depression: implications as a new mood stabilizer. Behav Pharmacol 2013;24:569-79
  • Arent CO, Valvassori SS, Fries GR, et al. Neuroanatomical profile of antimanic effects of histone deacetylases inhibitors. Mol Neurobiol 2011;43:207-14
  • Steckert AV, Valvassori SS, Varela RB, et al. Effects of sodium butyrate on oxidative stress and behavioural changes induced by administration of D-AMPH. Neurochem Int 2013;62:425-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.