427
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Using predrugs to optimize drug candidates

Bibliography

  • Ohlstein EH, Ruffolo RR Jr, Elliott JD. Drug discovery in the next millennium. Annu Rev Pharmacol Toxicol 2000;40:177-91
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22:151-85
  • DiMasi JA. The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 2002;20:1-10
  • Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery. The modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012;9:1001-13
  • Karaman R, Fattash B, Qtait A. The future of prodrugs – design by quantum mechanics methods. Expert Opin Drug Deliv 2013;10:713-29
  • Karaman R. Prodrugs design based on inter- and intramolecular processes. Chem Biol Drug Des 2013;82:643-68
  • Huttunen KM, Raunio H, Rautio J. Prodrugs--from serendipity to rational design. Pharmacol Rev 2011;63(3):750-71
  • Jana S, Mandlekar S, Marathe P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr Med Chem 2010;17(32):3874-908
  • Albert A. Chemical aspects of selective toxicity. Nature 1958;182:421-2
  • Stella VJ, Borchardt RT, Hageman MJ, et al. Prodrugs: challenges and rewards part 1 and 2. Springer Science + Business Media, New York, NY, USA; 2007
  • Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 2007;59(7):677-94
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008;7(3):255-70
  • Müller CE. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 2009;6(11):2071-83
  • Chipade V, Dewani A, Bakal R, Chandewar A. Prodrugs: a development of capping drugs. PDFARDIJ 2012;4A:17-34
  • Stella VJ, Charman WN, Naringrekar VH. Prodrugs. Do they have advantages in clinical practice? Drugs 1985;29(5):455-73
  • Albert A. Selective toxicity: the physico chemical basis of therapy. 7th edition. Chapman and Hall, New York, NY, USA; 1985
  • Bertolini A, Ferrari A, Ottani A, et al. Paracetamol: new vistas of an old drug. CNS Drug Rev 2006;12(3-4):250-75
  • Gonzalez FJ, Tukey RH. Drug metabolism. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. The McGraw-Hill Companies, Inc, New York, NY, USA; 2006. p. 71-91
  • Testa B. Prodrugs: bridging pharmacodynamic/pharmacokinetic gaps. Curr Opin Chem Biol 2009;13(3):338-44
  • Glazko AJ, Carnes HE, Kazenko A, et al. Succinic acid esters of chloramphenicol. Antibiot Annu 1957;5:792-802
  • Stella V. Pro-drugs: An overview and definition. Pro-drugs as novel drug delivery systems. ACS Symposium Series. 14. American Chemical Society; 1975. p. 1-115
  • Roche EB. Design of biopharmaceutical properties through prodrugs and analogs. American Pharmaceutical Association, Washington, DC, USA; 1977
  • Wu KM. A New Classification of prodrugs: regulatory perspectives. Pharmaceuticals 2009;2(3):77-81
  • Stella V. Prodrugs: some thoughts and current issues. J Pharm Sci 2010;99(12):4755-65
  • Di L, Kerns EH. Solubility issues in early discovery and HTS. In: Augustijins P, Brewster M, editors. Solvent systems and their selection in pharmaceutics and biopharmaceutics. Springer Science + Business Media, New York, NY, USA; 2007. p. 111-36
  • Fleisher D, Bong R, Stewart BH. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv Drug Deliv Rev 1996;19:115-30
  • del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 2008;35:161-74
  • Khor SP, Hsu A. The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol 2007;2:234-43
  • Hornykiewicz O. A brief history of levodopa. J Neurol 2010;257(Suppl 2):S249-52
  • Svensson LA, Tunek A. The design and bioactivation of presystemically stable prodrugs. Drug Metab Rev 1988;19:165-94
  • Tunek A, Levin E, Svensson LA. Hydrolysis of 3H-bambuterol, a carbamate prodrug of terbutaline, in blood from humans and laboratory animals in vitro. Biochem Pharmacol 1988;37:3867-76
  • Sitar DS. Clinical pharmacokinetics of bambuterol. Clin Pharmacokinet 1996;31:246-56
  • Persson G, Pahlm O, Gnosspelius Y. Oral bambuterol versus terbutaline in patients with asthma. Curr Ther Res 1995;56:457-65
  • Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs. J Med Chem 2004;47:2393-404
  • Denny WA. Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncol 2010;6:419-28
  • Shanghag A, Yam N, Jasti B. Prodrugs as drug delivery systems. In: Li X, Jasti BR, editors. Design of controlled release drug delivery systems. The McGraw-Hill Company, Inc, New York, NY, USA; 2006. p. 75-106
  • Amidon GL, Leesman GD, Elliott RL. Improving intestinal absorption of water-insoluble compounds: a membrane metabolism strategy. J Pharm Sci 1980;69:1363-8
  • Fleisher D, Stewart BH, Amidon GL. Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting. Methods Enzymol 1985;112:360-81
  • Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000;2:E6
  • Stella VJ, Himmelstein KJ. Prodrugs and site-specific drug delivery. J Med Chem 1980;23:1275-82
  • Stella VJ, Himmelstein KJ. Critique of prodrugs and site specific delivery. In: Bundgaard H, editor. Optimization of drug delivery. Alfred Benzon Symposium; Copenhagen, Munksgaard; 1982. p. 134-55
  • Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem 1984;27:261-6
  • Philpott GW, Shearer WT, Bower RJ, Parker CW. Selective cytotoxicity of hapten-substituted cells with an antibody-enzyme conjugate. J Immunol 1973;111:921-9
  • Deonarain MP, Spooner RA, Epenetos AA. Genetic delivery of enzymes for cancer therapy. Gene Ther 1996;2:235-44
  • Singhal S, Kaiser LR. Cancer chemotherapy using suicide genes. Surg Oncol Clin North Am 1998;7:505-36
  • Aghi M, Hochberg F, Breakefield XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000;2:148-64
  • Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001;187:22-36
  • Melton RG, Sherwood RF. Antibody-enzyme conjugates for cancer therapy. J Natl Cancer Inst 1996;88:153-65
  • Bagshawe KD, Sharma SK, Begent RH. Antibody-directed enzyme prodrug therapy (ADEPT) forcancer. Expert Opin Biol Ther 2004;4:1777-89
  • Wentworth P, Datta A, Blakey D, et al. Toward antibody-directed “abzyme” prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc Natl Acad Sci USA 1996;93:799-803
  • Fang L, Sun D. Predictive physiologically based pharmacokinetic model for antibody-directed enzyme prodrug therapy. Drug Metab Dispos 2008;36:1153-65
  • Xu G, McLeod HL. Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res 2001;7:3314-24
  • Huber BE, Richards CA, Austin EA. Virus-directed enzyme/prodrug therapy (VDEPT). Selectively engineering drug sensitivity into tumors. Ann N Y Acad Sci 1994;716:104-14; discussion 140-3
  • Huber BE, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci USA 1991;88(18):8039-43
  • Testa B, Mayer JM. Hydrolysis in drug and prodrug metabolism, chemistry, biochemistry and enzymology. VHCA, Zürich, Switzerland; 2003. p. 690-5
  • He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet 1999;37(6):471-84
  • Moore VA, Irwin WJ, Timmins P, et al. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 1: system characterisation. Int J Pharm 2000;210(1-2):15-27
  • Modr Z, Dvovacek K, Janku I, Krebs V. Pharmacokinetics of carfecillin and carindacillin. Int J Clin Pharmacol Biopharm 1997;15(2):81-3
  • Bhosle D, Bharambe SD, Gairola N, Dhaneshwar S. Mutual prodrug concept: fundamentals and applications. Indian J Pharm Sci 2006;68(3):286-94
  • English AR, Girard D, Haskell S L. Pharmacokinetics of sultamicillin in mice, rats, and dogs. Antimicrob Agents Chemother 1984;25(5):599-602
  • Saito A, Kato Y, Ishikawa K, et al. Lenampicillin (KBT-1585): pharmacokinetics and clinical evaluation. Chemotherapy 1984;32(Suppl 8):209-21
  • Warner GT, Jarvis B. Olmesartan medoxomil. Drugs 2002;62(9):1345-53
  • Wei CP, Anderson JA, Leopold I. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Visual Sci 1978;17(4):315-21
  • Jordan CG. How an increase in the carbon chain length of the ester moiety affects the stability of a homologous series of oxprenolol esters in the presence of biological enzymes. J Pharm Sci 1998;87(7):880-5
  • Beresford R, Ward A. Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis. Drugs 1987;33(1):31-49
  • Jann MW, Ereshefsky L, Saklad SR. Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet 1985;10(4):315-33
  • Kim I, Chu XY, Kim S, et al. Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J Biol Chem 2003;278(28):25348-56
  • Beutner KR. Valacyclovir: a review of its antiviral activity, pharmacokinetic properties, and clinical efficacy. Antivir Res 1995;28(4):281-90
  • Soul-Lawton J, Seaber E, On N, et al. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother 1995;39(12):2759-64
  • de Miranda P, Krasny HC, Page DA, Elion GB. The disposition of acyclovir in different species. J Pharmacol Exp Ther 1981;219(2):309-15
  • Martin DF, Sierra-Madero J, Walmsley S, et al. A controlled trial of valganciclovir as induction therapy for cytomegalovirus retinitis. N Engl J Med 2002;346(15):1119-26
  • Jung D, Dorr A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J Clin Pharmacol 1999;39(8):800-4
  • Sugawara M, Huang W, Fei YJ, et al. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci 2000;89(6):781-9
  • Gani D, Wilkie J. Stereochemical, mechanistic, and structural features of enzyme-catalyzed phosphate monoester hydrolyses. Chem Soc Rev 1995;24:55-63
  • Novak E, Wagner JG, Lamb DJ. Local and systemic tolerance, absorption and excretion of clindamycin hydrochloride after intramuscular administration. Int J Clin Pharmacol Ther Toxicol 1970;3(3):201-8
  • Riebe KW, Oesterling TO. Parenteral development of clindamycin-2-phosphate. Bull Parenter Drug Assoc 1972;26(3):139-46
  • Cambazard F. Clinical efficacy of Velac, a new tretinoin and clindamycin phosphate gel in acne vulgaris. J Eur Acad Dermatol Venereol 1998;11(Suppl 1):S20-7; discussion S8-9
  • Richardson K, Cooper K, Marriott MS, et al. Discovery of fluconazole, a novel antifungal agent. Rev Infect Dis 1990;12(Suppl 3):S267-71
  • Chapman TM, Plosker GL, Perry CM. Fosamprenavir: a review of its use in the management of antiretroviral therapy-naive patients with HIV infection. Drugs 2004;64:2101-24
  • Varia SA, Schuller S, Sloan KB, Stella VJ. Phenytoin prodrugs III: water-soluble prodrugs for oral and/or parenteral use. J Pharm Sci 1984;73(8):1068-73
  • Jordan AM, Khan TH, Malkin H, Osborn HMI. Synthesis and analysis of urea and carbamate prodrugs as candidates for melanocyte-directed enzyme prodrug therapy (MDEPT). Bioorg Med Chem 2002;10:2625-33
  • Yumibe N, Hule K, Chen KJ, et al. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol 1996;51:165-72
  • Shimma N, Umeda I, Arasaki M, et al. Thedesign and synthesis of a new tumor-selective fluoropyrimidine carbamate, capecitabine. Bioorg Med Chem 2000;8:1697-706
  • Alexander J, Carqill R, Michelson SR, Schwam H. Acyloxy) alkyl carbamates as novel bioreversible prodrugs for amines: increased permeation through biological membranes. J Med Chem 1988;31:318-22
  • Safadi M, Oliyai R, Stella VJ. Phosphoryloxymethylcarbamates and carbonates–novel water-soluble prodrugs for amines and hindered alcohols. Pharm Res 1993;10:1350-5
  • Hecker SJ, Calkins T, Price ME, et al. Prodrugs of cephalosporin RWJ-333441 (MC-04,546) with improved aqueous solubility. Antimicrob Agents Chemother 2003;47:2043-6
  • Venhuis BJ, Dijkstra D, Wustrow D, et al. Orally active oxime derivatives of the dopaminergic prodrug6-(N,N-di-n-propylamino)-3,4,5,6,7,8-hexahydro-2Hnaphthalen-1-one. Synthesis and pharmacological activity. J Med Chem 2003;46:4136-40
  • Madsen U, Krogsgaard-Larsen P, Liljefors T. Textbook of drug design and discovery. Taylor & Francis, Washington, DC, USA; 2002. p. 410-58
  • Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 2003;55:217-50
  • Beaumont K, Webster R, Gardner I, Dack K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab 2003;4:461-85
  • Bundgaard H, Falch E, Larsen C, et al.Pilocarpic acid esters as novel sequentially labile pilocarpine prodrugs for improved ocular delivery. J Med Chem 1985;28:979-81
  • Fredholt K, Mork N, Begtrup M. Hemiesters of aliphatic dicarboxylic acids as cyclizationactivated prodrug forms for protecting phenols against first-pass metabolism. Int J Pharm 1995;123:209-16
  • Karaman R, Pascal RA. Computational analysis of intramolecularity in proton transfer reactions. Org Bimol Chem 2010;8:5174-8
  • Karaman R. Prodrugs design – a new era. Nova publisher; USA: 2014. p. 1-278
  • Kirby AJ, Hollfelder F. From enzyme models to model enzymes. 1st edition. Royal Society of Chemistry, London, UK; 2009
  • Menger FM. An alternative view of enzyme catalysis. Pure Appl Chem 2005;77:1873-86
  • Milstien S, Cohen LA. Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc 1970;92:4377-82
  • Karaman R. Prodrugs for Masking Bitter Taste of Antibacterial Drugs- A Computational Approach. J Mol Model 2013;19:2399-412
  • Karaman R, Ghareeb H, Dajani KK, Scrano L. Hallak, H, Abu-Lafi S, Bufo SA. Design, synthesis and in-vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions. J Mol Aided Comp Des 2013;27(7):615-35
  • Karaman R, Dajani KK, Qtait A, Khamis M. Prodrugs of acyclovir - a computational approach. Chem Biol Drug Des 2012;79:819-34
  • Karaman R, Dajani KK, Hallak H. Computer-assisted design for atenolol prodrugs for the Use in aqueous formulations. J Mol Model 2012;18:1523-40
  • Karaman R, Qtait A, Dajani KK, Abu-Lafi S. Design and synthesis of an aqueous stable atenolol prodrug. Scientific World J 2014;2014: 13 pages
  • Hejaz H, Karaman R, Khamis M. Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 2012;18:103-14
  • Karaman R. Prodrugs of Aza nucleosides based on proton transfer reactions. J Comput Aided Mol Des 2010;24:961-70
  • Karaman R, Fattash B, Bader M. “Computationally designed atovaquone prodrugs based on bruice’s enzyme model”. Curr Comp Aided Drug Des 2014;10(1):15-27
  • Karaman R, Hallak H. Anti-malarial pro-drugs- a computational aided design. Chem Biol Drug Des 2010;76:350-60
  • Karaman R, Amly W, Scrano L, et al. Computationally Designed Prodrugs of Statins Based on Kirby’s Enzyme Model. J Mol Model 2013;19(9):3969-82
  • Karaman R, Karaman D, Ziadeh I. Computationally designed phenylephrine prodrugs- a model for enhancing bioavailability. J Mol Phys 2013;111(21):3249-64
  • Karaman R. Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des 2011;78:853-63
  • Reddy MR, Erion MD. Free energy calculations in rational drug design. Kluwer Academic/Plenum Publishers, Australia; 2001. p. 379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.