481
Views
33
CrossRef citations to date
0
Altmetric
Review

Discovery of novel inhibitors for the treatment of glaucoma

, , & , PhD

Bibliography

  • Cheng JW, Cheng SW, Ma XY, et al. Myocilin polymorphisms and primary open-angle glaucoma: a systematic review and meta-analysis. PLoS One 2012;7(9):e46632
  • Vadlapudi AD, Patel A, Cholkar K, Mitra AK. Recent patents on emerging therapeutics for the treatment of glaucoma, age related macular degeneration and uveitis. Recent Pat Biomed Eng 2012;5:83-101
  • Available from: http://www.nei.nih.gov/eyedata/adultvision_usa.asp
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90(3):262-7
  • Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol 2008;53(Suppl 1):S3-10
  • Chen J, Runyan SA, Robinson MR. Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol 2011;5:667-77
  • Alm A, Nilsson SF. Uveoscleral outflow – a review. Exp Eye Res 2009;88(4):760-8
  • Fautsch MP, Johnson DH. Aqueous humor outflow: what do we know? Where will it lead us? Invest Ophthalmol Vis Sci 2006;47(10):4181-7
  • Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of glaucoma: the combined structure-function index. Clin Ophthalmol 2014;8:611-21
  • Bahrami H. Causal inference in primary open angle glaucoma: specific discussion on intraocular pressure. Ophthalmic Epidemiol 2006;13(4):283-9
  • Shahidullah M, To CH, Pelis RM, et al. Studies on bicarbonate transporters and carbonic anhydrase in porcine nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 2009;50(4):1791-800
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7(2):168-81
  • Hollo G, Chiselita D, Petkova N, et al. The efficacy and safety of timolol maleate versus brinzolamide each given twice daily added to travoprost in patients with ocular hypertension or primary open-angle glaucoma. Eur J Ophthalmol 2006;16(6):816-23
  • Stewart WC, Day DG, Stewart JA, et al. Short-term ocular tolerability of dorzolamide 2% and brinzolamide 1% vs placebo in primary open-angle glaucoma and ocular hypertension subjects. Eye(Lond) 2004;18(9):905-10
  • Nesher R, Ticho U. Switching from systemic to the topical carbonic anhydrase inhibitor dorzolamide: effect on the quality of life of glaucoma patients with drug-related side effects. Isr Med Assoc J 2003;5(4):260-3
  • O’Connor DJ, Martone JF, Mead A. Additive intraocular pressure lowering effect of various medications with latanoprost. Am J Ophthalmol 2002;133(6):836-7
  • Silver LH. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: Results from two multicenter comfort studies. Brinzolamide comfort study group. Surv Ophthalmol 2000;44(Suppl 2):S141-5
  • Vadlapudi AD, Patel A, Cholkar K, Mitra AK. Recent patents on emerging therapeutics for the treatment of glaucoma, age related macular degeneration and uveitis. Curr Biomed Eng 2012;5(1):83-101
  • Scozzafava A, Menabuoni L, Mincione F, et al. Carbonic anhydrase inhibitors: perfluoroalkyl/aryl-substituted derivatives of aromatic/heterocyclic sulfonamides as topical intraocular pressure-lowering agents with prolonged duration of action. J Med Chem 2000;43(23):4542-51
  • de Leval X, Ilies M, Casini A, et al. Carbonic anhydrase inhibitors: synthesis and topical intraocular pressure lowering effects of fluorine-containing inhibitors devoid of enhanced reactivity. J Med Chem 2004;47(11):2796-804
  • Steele RM, Benedini F, Biondi S, et al. Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma. Bioorg Med Chem Lett 2009;19(23):6565-70
  • Fabrizi F, Mincione F, Somma T, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without no donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 2012;27(1):138-47
  • Carta F, Akdemir A, Scozzafava A, et al. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo. J Med Chem 2013;56(11):4691-700
  • Kasimogullari R, Bulbul M, Arslan BS, et al. Synthesis, characterization and antiglaucoma activity of some novel pyrazole derivatives of 5-amino-1,3,4-thiadiazole-2-sulfonamide. Eur J Med Chem 2010;45(11):4769-73
  • Gupta RC. Toxicology of organophosphate and carbamate compounds. Academic Press/Elsevier; Amsterdam: 2006
  • Goldblum D, Garweg JG, Bohnke M. Topical rivastigmine, a selective acetylcholinesterase inhibitor, lowers intraocular pressure in rabbits. J Ocular Pharmacol Ther 2000;16(1):29-35
  • Danser AH, Derkx FH, Admiraal PJ, et al. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci 1994;35(3):1008-18
  • Wagner J, Jan Danser AH, Derkx FH, et al. Demonstration of renin mrna, angiotensinogen mrna, and angiotensin converting enzyme mrna expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmol 1996;80(2):159-63
  • Hall JE. Historical perspective of the renin-angiotensin system. Mol Biotechnol 2003;24(1):27-39
  • Jackson KE. Renin and angiotensin. 11. Medical Publishing Divivion, New York; 2006
  • Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation 1998;97(14):1411-20
  • Shah GB, Sharma S, Mehta AA, et al. Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma. J Cardiovasc Pharmacol 2000;36(2):169-75
  • Mehta A, Iyer L, Parmar S, et al. Oculohypotensive effect of perindopril in acute and chronic models of glaucoma in rabbits. Can J Physiol Pharmacol 2010;88(5):595-600
  • Rao PV, Deng PF, Kumar J, et al. Modulation of aqueous humor outflow facility by the rho kinase-specific inhibitor y-27632. Invest Ophthalmol Vis Sci 2001;42(5):1029-37
  • Yu M, Chen X, Wang N, et al. H-1152 effects on intraocular pressure and trabecular meshwork morphology of rat eyes. J Ocular Pharmacol Ther 2008;24(4):373-9
  • Tamm ER. [functional morphology of the outflow pathways of aqueous humor and their changes in open angle glaucoma]. Ophthalmologe 2013;110(11):1026-35
  • Honjo M, Inatani M, Kido N, et al. Effects of protein kinase inhibitor, ha1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 2001;119:1171-8
  • Kirihara T, Shimazaki A, Nakamura M, et al. Ocular hypotensive efficacy of src-family tyrosine kinase inhibitors via different cellular actions from rock inhibitors. Exp Eye Res 2014;119:97-105
  • Liu B, Neufeld AH. Activation of epidermal growth factor receptor signals induction of nitric oxide synthase-2 in human optic nerve head astrocytes in glaucomatous optic neuropathy. Neurobiol Dis 2003;13(2):109-23
  • Malone P, Miao H, Parker A, et al. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 2007;55(10):1085-98
  • Liu B, Chen H, Johns TG, et al. Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J Neurosci 2006;26(28):7532-40
  • Su W, Li Z, Jia Y, et al. Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS One 2014;9(6):e99719
  • Kasai H, Ishisaka M, Shirasawa E, et al. A three-dimensional collagen gel contraction monitoring system that uses a porcine trabecular meshwork for screening of anti-intraocular pressure agents. Pharm Anal Acta 2012;3:154
  • Kasai H, Imamura T, Tsuruma K, et al. Effects of roscovitine, a cell cyclin [correction of cycling]-dependent kinase inhibitor, on intraocular pressure of rabbit and retinal ganglion cell damage. Neurosci Lett 2013;535:95-9
  • Hall A. Rho family gtpases. Biochem Soc Trans 2012;40(6):1378-82
  • Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 2005;4(5):387-98
  • Goldhagen B, Proia AD, Epstein DL, et al. Elevated levels of rhoa in the optic nerve head of human eyes with glaucoma. J Glaucoma 2012;21(8):530-8
  • Liu L, Li G, Li Q, et al. Triptolide induces apoptosis in human leukemia cells through caspase-3-mediated rock1 activation and mlc phosphorylation. Cell Death Dis 2013;4:e941
  • Riento K, Totty N, Villalonga P, et al. Rhoe function is regulated by rock i-mediated phosphorylation. EMBO J 2005;24(6):1170-80
  • Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative normal-tension glaucoma study group. Am J Ophthalmol 1998;126(4):487-97
  • Jacobs M, Hayakawa K, Swenson L, et al. The structure of dimeric rock i reveals the mechanism for ligand selectivity. J Biol Chem 2006;281(1):260-8
  • Breitenlechner C, Gassel M, Hidaka H, et al. Protein kinase a in complex with rho-kinase inhibitors y-27632, fasudil, and h-1152p: structural basis of selectivity. Structure 2003;11(12):1595-607
  • Okumura N, Koizumi N, Kay EP, et al. The rock inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci 2013;54(4):2493-502
  • Honjo M, Tanihara H, Kameda T, et al. Potential role of rho-associated protein kinase inhibitor y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2007;48(12):5549-57
  • Bertrand J, Di Polo A, McKerracher L. Enhanced survival and regeneration of axotomized retinal neurons by repeated delivery of cell-permeable c3-like rho antagonists. Neurobiol Dis 2007;25(1):65-72
  • Delaney Y, Walshe TE, O’Brien C. Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci 2006;83(7):406-14
  • Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol 2005;16(2):79-83
  • Bertrand J, Winton MJ, Rodriguez-Hernandez N, et al. Application of rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J Neurosci 2005;25(5):1113-21
  • Kitaoka Y, Kitaoka Y, Kumai T, et al. Involvement of rhoa and possible neuroprotective effect of fasudil, a rho kinase inhibitor, in nmda-induced neurotoxicity in the rat retina. Brain Res 2004;1018(1):111-18
  • Chrissobolis S, Budzyn K, Marley PD, et al. Evidence that estrogen suppresses rho-kinase function in the cerebral circulation in vivo. Stroke 2004;35(9):2200-5
  • Kandabashi T, Shimokawa H, Miyata K, et al. Evidence for protein kinase c-mediated activation of rho-kinase in a porcine model of coronary artery spasm. Arterioscler Thromb Vasc Biol 2003;23(12):2209-14
  • Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 2001;42(1):137-44
  • Tokushige H, Inatani M, Nemoto S, et al. Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci 2007;48(7):3216-22
  • Peterson WM, Lampe1 J, Navratil T, et al. Topical administration of a novel and potent rho kinase (rok) inhibitor ins117548 alters the actin cytoskeleton, effectively lowers iop, and is well tolerated on the ocular surface. Invest Ophthalmol Vis Sci 2008;49:E-abstract 3816
  • Nakazato A, Fujino R, Maeda K. [clinical observations with cefteram pivoxil granules in field of pediatrics]. Jpn J Antibiot 1989;42(8):1791-8
  • Van de Velde S, Van Bergen T, Sijnave D, et al. Ama0076, a novel, locally acting rho kinase inhibitor, potently lowers intraocular pressure in new zealand white rabbits with minimal hyperemia. Invest Ophthalmol Vis Sci 2014;55(2):1006-16
  • Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol 2014;8:883-90
  • Watabe H, Abe S, Yoshitomi T. Effects of rho-associated protein kinase inhibitors y-27632 and y-39983 on isolated rabbit ciliary arteries. Jpn J Ophthalmol 2011;55(4):411-17
  • Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 2012;11(7):541-59
  • Schroter T, Minond D, Weiser A, et al. Comparison of miniaturized time-resolved fluorescence resonance energy transfer and enzyme-coupled luciferase high-throughput screening assays to discover inhibitors of rho-kinase ii (rock-ii). J Biomol Screen 2008;13(1):17-28
  • Feng Y, Yin Y, Weiser A, et al. Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective rho kinase (rock-ii) inhibitors. J Med Chem 2008;51(21):6642-5
  • Chen YT, Bannister TD, Weiser A, et al. Chroman-3-amides as potent Rho kinase inhibitors. Bioorg Med Chem Lett 2008;18(24):6406-9
  • Sessions EH, Yin Y, Bannister TD, et al. Benzimidazole- and benzoxazole-based inhibitors of rho kinase. Bioorg Med Chem Lett 2008;18(24):6390-3
  • Yin Y, Cameron MD, Lin L, et al. Discovery of potent and selective urea-based rock inhibitors and their effects on intraocular pressure in rats. ACS Med Chem Lett 2010;1(4):175-9
  • Fang X, Chen YT, Sessions EH, et al. Synthesis and biological evaluation of 4-quinazolinones as rho kinase inhibitors. Bioorg Med Chem Lett 2011;21(6):1844-8
  • Yin Y, Lin L, Ruiz C, et al. Synthesis and biological evaluation of urea derivatives as highly potent and selective rho kinase inhibitors. J Med Chem 2013;56(9):3568-81
  • Pireddu R, Forinash KD, Sun NN, et al. Pyridylthiazole-based ureas as inhibitors of rho associated protein kinases (rock1 and 2). MedChemComm 2012;3(6):699-709
  • Davis RL, Kahraman M, Prins TJ, et al. Benzothiophene containing rho kinase inhibitors: efficacy in an animal model of glaucoma. Bioorg Med Chem Lett 2010;20(11):3361-6
  • Henderson AJ, Hadden M, Guo C, et al. 2,3-diaminopyrazines as rho kinase inhibitors. Bioorg Med Chem Lett 2010;20(3):1137-40
  • Ray P, Wright J, Adam J, et al. Fragment-based discovery of 6-substituted isoquinolin-1-amine based rock-i inhibitors. Bioorg Med Chem Lett 2011;21(1):97-101
  • Ray P, Wright J, Adam J, et al. Optimisation of 6-substituted isoquinolin-1-amine based rock-i inhibitors. Bioorg Med Chem Lett 2011;21(4):1084-8
  • Gong LL, Fang LH, Peng JH, et al. Integration of virtual screening with high-throughput screening for the identification of novel rho-kinase i inhibitors. J Biotechnol 2010;145(3):295-303
  • Shen M, Yu H, Li Y, et al. Discovery of rho-kinase inhibitors by docking-based virtual screening. Mol Biosyst 2013;9(6):1511-21
  • Shen M, Zhou S, Li Y, et al. Discovery and optimization of triazine derivatives as rock1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations. Mol Biosyst 2013;9(3):361-74
  • Honjo M, Inatani M, Kido N, et al. Effects of protein kinase inhibitor, ha1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 2001;119(8):1171-8
  • Faralli JA, Newman JR, Sheibani N, et al. Integrin-linked kinase regulates integrin signaling in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011;52(3):1684-92
  • Harrison BA, Whitlock NA, Voronkov MV, et al. Novel class of lim-kinase 2 inhibitors for the treatment of ocular hypertension and associated glaucoma. J Med Chem 2009;52(21):6515-18
  • Welsbie DS, Yang Z, Ge Y, et al. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci USA 2013;110(10):4045-50
  • Abdel-Magid AF. Dual leucine zipper kinase inhibitors: Potential treatments for neurodegenerative diseases. ACS Med Chem Lett 2014. 10.1021/ml500347s
  • Patel S, Cohen F, Dean BJ, et al. Discovery of dual leucine zipper kinase (dlk, map3k12) inhibitors with activity in neurodegeneration models. J Med Chem 2014. 10.1021/jm5013984
  • Levkovitch-Verbin H, Quigley HA, Martin KR, et al. The transcription factor c-jun is activated in retinal ganglion cells in experimental rat glaucoma. Exp Eye Res 2005;80(5):663-70
  • Liu H, Sun H, Liu C. Interference of the apoptotic signaling pathway in rgc stress response by sp600125 in moderate ocular hypertensive rats. Chin J Physiol 2011;54(2):124-32
  • Bain J, McLauchlan H, Elliott M, et al. The specificities of protein kinase inhibitors: an update. Biochem J 2003;371(Pt 1):199-204
  • Bessero AC, Chiodini F, Rungger-Brandle E, et al. Role of the c-jun n-terminal kinase pathway in retinal excitotoxicity, and neuroprotection by its inhibition. J Neurochem 2010;113(5):1307-18
  • Nagata T, Ueno S, Morita H, et al. Direct inhibition of n-methyl-d-aspartate (nmda)-receptor function by antiglaucomatous beta-antagonists. J Pharmacol Sci 2008;106(3):423-34
  • Wang RF, Gagliuso DJ, Podos SM. Effect of flunarizine, a calcium channel blocker, on intraocular pressure and aqueous humor dynamics in monkeys. J Glaucoma 2008;17(1):73-8
  • Steinhausen K, Stumpff F, Strauss O, et al. Influence of muscarinic agonists and tyrosine kinase inhibitors on l-type ca(2+)channels in human and bovine trabecular meshwork cells. Exp Eye Res 2000;70(3):285-93
  • Payne LJ, Slagle TM, Cheeks LT, et al. Effect of calcium channel blockers on intraocular pressure. Ophthalmic Res 1990;22(6):337-41
  • Santafe J, Martinez de Ibarreta MJ, Segarra J, et al. A long-lasting hypotensive effect of topical diltiazem on the intraocular pressure in conscious rabbits. Naunyn Schmiedebergs Arch Pharmacol 1997;355(5):645-50
  • Melena J, Santafe J, Segarra J. The effect of topical diltiazem on the intraocular pressure in betamethasone-induced ocular hypertensive rabbits. J Pharmacol Exp Ther 1998;284(1):278-82
  • Siegner SW, Netland PA, Schroeder A, et al. Effect of calcium channel blockers alone and in combination with antiglaucoma medications on intraocular pressure in the primate eye. J Glaucoma 2000;9(4):334-9
  • Frasson M, Sahel JA, Fabre M, et al. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 1999;5(10):1183-7
  • Crosson CE, Willis JA, Potter DE. Effect of the calcium antagonist, nifedipine, on ischemic retinal dysfunction. J Ocul Pharmacol 1990;6(4):293-9
  • Abreu MM, Kim YY, Shin DH, et al. Topical verapamil and episcleral venous pressure. Ophthalmology 1998;105(12):2251-5
  • Netland PA, Feke GT, Konno S, et al. Optic nerve head circulation after topical calcium channel blocker. J Glaucoma 1996;5(3):200-6
  • Uemura A, Mizota A. Retinal concentration and protective effect against retinal ischemia of nilvadipine in rats. Eur J Ophthalmol 2008;18(1):87-93
  • Takano Y, Ohguro H, Dezawa M, et al. Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem Biophys Res Commun 2004;313(4):1015-22
  • Yamazaki H, Ohguro H, Maeda T, et al. Preservation of retinal morphology and functions in royal college surgeons rat by nilvadipine, a ca(2+) antagonist. Invest Ophthalmol Vis Sci 2002;43(4):919-26
  • Toriu N, Akaike A, Yasuyoshi H, et al. Lomerizine, a ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000;70(4):475-84
  • Fitzgerald M, Payne SC, Bartlett CA, et al. Secondary retinal ganglion cell death and the neuroprotective effects of the calcium channel blocker lomerizine. Invest Ophthalmol Vis Sci 2009;50(11):5456-62
  • Cholkar K, Hariharan S, Gunda S, et al. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014;15(6):1454-67
  • Earla R, Boddu SH, Cholkar K, et al. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids-quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2010;52(4):525-33
  • Cholkar K, Gunda S, Earla R, et al. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech 2014. 10.1208/s12249-014-0244-2
  • Available from: http://clinicaltrials.gov/show/NCT02136940
  • Available from: http://clinicaltrials.gov/show/NCT02207621
  • Available from: http://clinicaltrials.gov/show/NCT02057575
  • Available from: http://clinicaltrials.gov/ct2/show/NCT00515424?term=RKI-983&rank=2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.