564
Views
24
CrossRef citations to date
0
Altmetric
Review

Successes and future outlook for microfluidics-based cardiovascular drug discovery

& (Chair of Thermal Engineering) (Chair of Thermal Engineering) (Professor) (Chair of Thermal Engineering) (Chair of Thermal Engineering) (Professor) (Chair of Thermal Engineering) (Chair of Thermal Engineering) (Professor)

Bibliography

  • Park SW, Byun D, Bae YM, et al. Effects of fluid flow on voltage-dependent calcium channels in rat vascular myocytes: fluid flow as a shear stress and a source of artifacts during patch-clamp studies. Biochem Biophys Res Commun 2007;358(4):1021-7
  • Amano S, Ishikawa T, Nakayama K. Facilitation of L-type Ca2+ currents by fluid flow in rabbit cerebral artery myocytes. J Pharmacol Sci 2005;98(4):425-9
  • Bryan MT, Duckles H, Feng S, et al. Mechanoresponsive networks controlling vascular inflammation. Arterioscler Thromb Vasc Biol 2014;34(10):2199-205
  • Wragg JW, Durant S, McGettrick HM, et al. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 2014;21(4):290-300
  • Heo KS, Fujiwara K, Abe J. Shear stress and atherosclerosis. Mol Cells 2014;37(6):435-40
  • Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: virchow’s triad revisited. Anesth Analg 2012;114(2):275-85
  • White J, Lancelot M, Sarnaik S, Hines P. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: application of a microfluidic flow adhesion bioassay. Clin Hemorheol Microcirc 2014. In Press. doi: 10.3233/CH-141847
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014;32(8):760-72
  • Schaff UY, Xing MM, Lin KK, et al. Vascular mimetics based on microfluidics for imaging the leukocyte – endothelial inflammatory response. Lab Chip 2007;7(4):448-56
  • Cokelet GR, Soave R, Pugh G, Rathbun L. Fabrication of in vitro microvascular blood flow systems by photolithography. Microvasc Res 1993;46(3):394-400
  • Rosano JM, Tousi N, Scott RC, et al. A physiologically realistic in vitro model of microvascular networks. Biomed Microdevices 2009;11(5):1051-7
  • Young EW. Advances in microfluidic cell culture systems for studying angiogenesis. J Lab Autom 2013;18(6):427-36
  • Wong KH, Chan JM, Kamm RD, Tien J. Microfluidic models of vascular functions. Annu Rev Biomed Eng 2012;14:205-30
  • Prabhakarpandian B, Shen MC, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011;82(3):210-20
  • Myers DR, Sakurai Y, Tran R, et al. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp 2012;64
  • Yu JQ, Liu XF, Chin LK, et al. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Lab Chip 2013;13(14):2693-700
  • Lamberti G, Prabhakarpandian B, Garson C, et al. Bioinspired microfluidic assay for in vitro modeling of leukocyte-endothelium interactions. Anal Chem 2014;86(16):8344-51
  • Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109(24):9342-7
  • Estrada R, Giridharan G, Prabhu SD, Sethu P. Endothelial cell culture model of carotid artery atherosclerosis. IEEE Eng Med Bio 2011;2011:186-9
  • Kane BJ, Zinner MJ, Yarmush ML, Toner M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 2006;78(13):4291-8
  • Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science 2010;328(5986):1662-8
  • Mu X, Zheng W, Xiao L, et al. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 2013;13(8):1612-18
  • Guzzardi MA, Vozzi F, Ahluwalia AD. Study of the crosstalk between hepatocytes and endothelial cells using a novel multicompartmental bioreactor: a comparison between connected cultures and cocultures. Tissue Eng Part A 2009;15(11):3635-44
  • Sung JH, Esch MB, Prot JM, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 2013;13(7):1201-12
  • Zhang C, Zhao Z, Abdul Rahim NA, et al. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 2009;9(22):3185-92
  • Schimek K, Busek M, Brincker S, et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 2013;13(18):3588-98
  • Moya ML, Hsu YH, Lee AP, et al. In vitro perfused human capillary networks. Tissue Eng Part C-Methods 2013;19(9):730-7
  • Moya ML, Alonzo LF, George SC. Microfluidic device to culture 3D in vitro human capillary networks. Methods Mol Biol 2014;1202:21-7
  • Harker KS, Jivan E, McWhorter FY, et al. Shear forces enhance Toxoplasma gondii tachyzoite motility on vascular endothelium. mBio 2014;5(2):e01111-13
  • Franco D, Milde F, Klingauf M, et al. Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials 2013;34(5):1488-97
  • Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013;110(26):10753-8
  • Wang Y, Giebink A, Spence DM. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integr Biol (Camb) 2014;6(1):65-75
  • Lockwood SY, Erkal JL, Spence DM. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 2014;38:1-7
  • Neeves KB, Onasoga AA, Wufsus AR. The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury. Curr Opin Hematol 2013;20(5):417-23
  • Kuo JN, Li BS. Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 2014;16(4):549-58
  • Lin CH, Liu CY, Shih CH, Lu CH. A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer. Biomicrofluidics 2014;8(5):052105
  • Cakmak O, Ermek E, Kilinc N, et al. A cartridge based sensor array platform for multiple coagulation measurements from plasma. Lab Chip 2014;15(1):113-20
  • Yu J, Tao D, Ng EX, et al. Real-time measurement of thrombin generation using continuous droplet microfluidics. Biomicrofluidics 2014;8(5):052108
  • Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res 2014;134(6):1335-43
  • Neeves KB, Maloney SF, Fong KP, et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J Thromb Haemost 2008;6(12):2193-201
  • Li H, Han D, Pauletti GM, Steckl AJ. Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 2014;14(20):4035-41
  • Muthard RW, Diamond SL. Rapid on-chip recalcification and drug dosing of citrated whole blood using microfluidic buffer sheath flow. Biorheology 2014;51(2-3):227-37
  • Li M, Ku DN, Forest CR. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 2012;12(7):1355-62
  • Tovar-Lopez FJ, Rosengarten G, Westein E, et al. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 2010;10(3):291-302
  • Ku CJ, Oblak TD, Spence DM. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug. Anal Chem 2008;80(19):7543-8
  • Tran L, Farinas J, Ruslim-Litrus L, et al. Agonist-induced calcium response in single human platelets assayed in a microfluidic device. Anal Biochem 2005;341(2):361-8
  • Li W, Tang X, Yi W, et al. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway. PLoS One 2013;8(12):e85120
  • Yi W LQ, Shen J, Ren L, et al. Modulation of platelet activation and thrombus formation using a pan-PI3K inhibitor S14161. PLoS One 2014;9(8):e102394
  • Li M, Hotaling NA, Ku DN, Forest CR. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS One 2014;9(1):e82493
  • Vickerman V, Blundo J, Chung S, Kamm R. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 2008;8(9):1468-77
  • Jeong GS, Kwon GH, Kang AR, et al. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed Microdevices 2011;13(4):717-23
  • Kim C, Kasuya J, Jeon J, et al. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 2014;15(1):301-10
  • Lee H, Kim S, Chung M, et al. A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 2014;91:90-8
  • Werdich AA, Lima EA, Ivanov B, et al. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip 2004;4(4):357-62
  • Ganitkevich V, Reil S, Schwethelm B, et al. Dynamic responses of single cardiomyocytes to graded ischemia studied by oxygen clamp in on-chip picochambers. Circ Res 2006;99(2):165-71
  • Cheng W, Klauke N, Smith G, Cooper JM. Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 2010;31(8):1405-13
  • Kaneko T, Kojima K, Yasuda K. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst 2007;132(9):892-8
  • Feinberg AW, Feigel A, Shevkoplyas SS, et al. Muscular thin films for building actuators and powering devices. Science 2007;317(5843):1366-70
  • Agarwal A, Goss JA, Cho A, et al. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 2013;13(18):3599-608
  • Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 2011;11(24):4165-73
  • McCain ML, Agarwal A, Nesmith HW, et al. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 2014;35(21):5462-71
  • Shin SR, Jung SM, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 2013;7(3):2369-80
  • Zhu F, Skommer J, Huang Y, et al. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos. Cytometry A 2014;85(11):921-32
  • Mondal S, Koushika SP. Microfluidic devices for imaging trafficking events in vivo using genetic model organisms. Methods Mol Biol 2014;1174:375-96
  • Li Y, Yang F, Chen Z, et al. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity. PLoS One 2014;9(4):e94792
  • Akagi J, Hall CJ, Crosier KE, et al. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests. Curr Protoc Cytom/ editorial board, J Paul Robinson, managing editor [et al.] 2014;67:Unit 9 44
  • Wang KI, Salcic Z, Yeh J, et al. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays. Biosens Bioelectron 2013;48:188-96
  • Bischel LL, Mader BR, Green JM, et al. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 2013;13(9):1732-6
  • Akagi J, Khoshmanesh K, Evans B, et al. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS One 2012;7(5):e36630
  • Akagi J, Zhu F, Hall CJ, et al. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 2014;85(6):537-47
  • Ferguson BS, Hoggarth DA, Maliniak D, et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 2013;5(213):213ra165
  • Swensen JS, Xiao Y, Ferguson BS, et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 2009;131(12):4262-6
  • Tarabella G, Balducci AG, Coppede N, et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim Biophys Acta 2013;1830(9):4374-80
  • Lafreniere NM, Shih SC, Abu-Rabie P, et al. Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics. Bioanalysis 2014;6(3):307-18
  • Kim Y, Lobatto ME, Kawahara T, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 2014;111(3):1078-83
  • Dixon AJ, Dhanaliwala AH, Chen JL, Hossack JA. Enhanced Intracellular Delivery of a Model Drug Using Microbubbles Produced by a Microfluidic Device. Ultrasound Med Biol 2013;39(7):1267-76
  • Dhanaliwala AH, Chen JL, Wang SY, Hossack JA. Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid Nanofluidics 2013;14(3-4):457-67
  • Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013;456(2):437-45
  • Li X, Mearns SM, Martins-Green M, Liu Y. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip. J Vis Exp 2013(80):e50771
  • Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014;69(7):777-84
  • Zeng H, Zhao Y. Rheological analysis of non-Newtonian blood flow using a microfluidic device. Sens Actuators A Phys 2011;166(2):207-13
  • Sousa PC, Pinho FT, Oliveira MSN, Alves MA. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 2011;5:14108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.