539
Views
72
CrossRef citations to date
0
Altmetric
Review

Tissue-engineered models of human tumors for cancer research

, PhD (Postdoctoral Scientist) & , PhD (Mikati Foundation Professor of Biomedical Engineering, Professor of Medical Sciences, Director)

Bibliography

  • Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 2013;52(3):167-82
  • Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007;130(4):601-10
  • Lin CQ, Bissell MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. Faseb J 1993;7(9):737-43
  • Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006;22:287-309
  • Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 2011;5(3):239-48
  • Linde N, Gutschalk CM, Hoffmann C, et al. Integrating macrophages into organotypic co-cultures: a 3D in vitro model to study tumor-associated macrophages. PLoS One 2012;7(7):e40058
  • Smalley KS, Lioni M, Herlyn M. Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 2006;42(8-9):242-7
  • Chitcholtan K, Asselin E, Parent S, et al. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res 2013;319(1):75-87
  • Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013;110(9):3507-12
  • van der Worp HB, Howells DW, Sena ES, et al. Can animal models of disease reliably inform human studies? PLoS Med 2010;7(3):e1000245
  • Villasante A, Marturano-Kruik A, Vunjak-Novakovic G. Bioengineered human tumor within a bone niche. Biomaterials 2014;35(22):5785-94
  • Olechnowicz SW, Edwards CM. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res 2014;74(6):1625-31
  • Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer 2011;11(6):411-25
  • Weaver VM, Howlett AR, Langton-Webster B, et al. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 1995;6(3):175-84
  • Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001;1(1):46-54
  • Mroue R, Bissell MJ. Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 2013;945:221-50
  • Lee GY, Kenny PA, Lee EH, et al. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007;4(4):359-65
  • Weigelt B, Ghajar CM, Bissell MJ. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev 2014;69-70:42-51
  • Wang F, Weaver VM, Petersen OW, et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 1998;95(25):14821-6
  • Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011;17(3):320-9
  • Halpern B, Pejsachowicz B, Febvre HL, et al. Differences in patterns of aggregation of malignant and non-malignant mammalian cells. Nature 1966;209(5019):157-9
  • Inch WR, McCredie JA, Sutherland RM. Growth of nodular carcinomas in rodents compared with multi-cell spheroids in tissue culture. Growth 1970;34(3):271-82
  • Ratnayaka SH, Hillburn TE, Forouzan O, et al. PDMS well platform for culturing millimeter-size tumor spheroids. Biotechnol Prog 2013;29(5):1265-9
  • Das T, Meunier L, Barbe L, et al. Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform. Biomicrofluidics 2013;7(1):11805
  • Hirschhaeuser F, Menne H, Dittfeld C, et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010;148(1):3-15
  • Feder-Mengus C, Ghosh S, Weber WP, et al. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer 2007;96(7):1072-82
  • Kondo J, Endo H, Okuyama H, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA 2011;108(15):6235-62
  • Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011;141(5):1762-72
  • Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014;159(1):176-87
  • Cheung KJ, Gabrielson E, Werb Z, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013;155(7):1639-51
  • Li X, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med 2014;20(7):769-77
  • Fischbach C, Chen R, Matsumoto T, et al. Engineering tumors with 3D scaffolds. Nat Methods 2007;4(10):855-60
  • Gill BJ, West JL. Modeling the tumor extracellular matrix: tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech 2014;47(9):1969-78
  • Long TJ, Sprenger CC, Plymate SR, et al. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials 2014;35(28):8164-74
  • Florczyk SJ, Wang K, Jana S, et al. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ecm. Biomaterials 2013;34(38):10143-50
  • Chen L, Xiao Z, Meng Y, et al. The enhancement of cancer stem cell properties of mcf-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 2012;33(5):1437-44
  • Hielscher AC, Gerecht S. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix. Cancer Res 2012;72(23):6089-96
  • Kushida A, Yamato M, Konno C, et al. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 1999;45(4):355-62
  • Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002;90(3):e40
  • Akimoto J, Takagi S, Nakayama M, et al. Transplantation of cancerous cell sheets effectively generates tumour-bearing model mice. J Tissue Eng Regen Med 2013. [ Epub ahead of print]
  • Sung KE, Su X, Berthier E, et al. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One 2013;8(10):e76373
  • Fang X, Sittadjody S, Gyabaah K, et al. Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 2013;8(9):e75187
  • Ehsan SM, Welch-Reardon KM, Waterman ML, et al. A three-dimensional in vitro model of tumor cell intravasation. Integr Biol (Camb) 2014;6(6):603-10
  • Ferrarini M, Steimberg N, Ponzoni M, et al. Ex-vivo dynamic 3-D culture of human tissues in the rccs bioreactor allows the study of multiple myeloma biology and response to therapy. PLoS One 2013;8(8):e71613
  • Domansky K, Inman W, Serdy J, et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 2010;10(1):51-8
  • Clark AM, Wheeler SE, Taylor DP, et al. A microphysiological system model of therapy for liver micrometastases. Exp Biol Med 2014;239(9):1170-9
  • Wheeler SE, Borenstein JT, Clark AM, et al. All-human microphysical model of metastasis therapy. Stem Cell Res Ther 2013;4(Suppl 1):S11
  • Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989;8(2):98-101
  • Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003;423(6937):349-55
  • Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 2005;5(1):21-8
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423(6937):337-42
  • Prevarskaya N, Skryma R, Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 2011;11(8):609-18
  • Barnes GL, Javed A, Waller SM, et al. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003;63(10):2631-7
  • Rucci N, Teti A. Osteomimicry: how tumor cells try to deceive the bone. Front Biosci 2010;2:907-15
  • Fong EL, Lamhamedi-Cherradi SE, Burdett E, et al. Modeling ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA 2013;110(16):6500-5
  • Kwon H, Kim HJ, Rice WL, et al. Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J Tissue Eng Regen Med 2010;4(8):590-9
  • Sieh S, Taubenberger AV, Lehman ML, et al. Paracrine interactions between lncap prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone 2014;63:121-31
  • Mastro AM, Vogler EA. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 2009;69(10):4097-100
  • Grayson WL, Martens TP, Eng GM, et al. Biomimetic approach to tissue engineering. Semin Cell Dev Biol 2009;20(6):665-73
  • Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009;15(2):205-19
  • Marolt D, Campos IM, Bhumiratana S, et al. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci USA 2012;109(22):8705-9
  • de Peppo GM, Vunjak-Novakovic G, Marolt D. Cultivation of human bone-like tissue from pluripotent stem cell-derived osteogenic progenitors in perfusion bioreactors. Methods Mol Biol 2014;1202:173-84
  • Grayson WL, Bhumiratana S, Cannizzaro C, et al. Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 2008;14(11):1809-20
  • Li H, Collado M, Villasante A, et al. The ink4/arf locus is a barrier for iPS cell reprogramming. Nature 2009;460(7259):1136-9
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86(3):353-64
  • Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394(6692):485-90
  • Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007;117(6):1616-26
  • Correia C, Grayson WL, Park M, et al. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS One 2011;6(12):e28352
  • Mori G, D’Amelio P, Faccio R, et al. The interplay between the bone and the immune system. Clin Dev Immunol 2013;2013:720504
  • Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23(11):549-55
  • Xiao Q, Zhang X, Wu Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol 2014;35(8):7611-16
  • Wang YK, Yu X, Cohen DM, et al. Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, Rhoa/ROCK, and cytoskeletal tension. Stem Cells Dev 2012;21(7):1176-86
  • Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 1999;68:459-86
  • Grayson WL, Marolt D, Bhumiratana S, et al. Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnol Bioeng 2011;108(5):1159-70
  • Grayson WL, Frohlich M, Yeager K, et al. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA 2010;107(8):3299-304
  • de Peppo GM, Marcos-Campos I, Kahler DJ, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA 2013;110(21):8680-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.