691
Views
56
CrossRef citations to date
0
Altmetric
Review

Progress in visual representations of chemical space

, , , , &

Bibliography

  • Lowe D. Chemical space is big. Really big. Med Chem Commun 2015;6:12
  • Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 2013;27:675-9
  • Lusher SJ, McGuire R, van Schaik RC, et al. Data-driven medicinal chemistry in the era of big data. Drug Discov Today 2014;19:859-68
  • Szlezák N, Evers M, Wang J, et al. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin Pharmacol Ther 2014;95:492-5
  • Medina-Franco JL. Interrogating novel areas of chemical space for drug discovery using chemoinformatics. Drug Dev Res 2012;73:430-8
  • Oprea TI, Gottfries J. Chemography: The art of navigating in chemical space. J Comb Chem 2001;3:157-66
  • Rosén J, Gottfries J, Muresan S, et al. Novel chemical space exploration via natural products. J Med Chem 2009;52:1953-62
  • Von Lilienfeld OA. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties. Int J Quant Chem 2013;113:1676-89
  • Mellinger M, Chork SCY, Dijkstra S, et al. The multivariate chemical space, and the integration of the chemical, geographical, and geophysical spaces. J Geochem Explor 1984;21:143-8
  • Dobson CM. Chemical space and biology. Nature 2004;432:824-8
  • Carbó-Dorca R. About the concept of chemical space: a concerned reflection on some trends of modern scientific thought within theoretical chemical lore. J Math Chem 2013;51:413-19
  • Ritchie TJ, Ertl P, Lewis R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov Today 2011;16:65-72
  • Oellien F, Ihlenfeldt W-D, Gasteiger J. InfVis - platform-independent visual data mining of multidimensional chemical data sets. J Chem Inf Model 2005;45:1456-67
  • Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, et al. Visualization of the chemical space in drug discovery. Curr Comp Aided Drug Des 2008;4:322-33
  • Medina-Franco JL, Aguayo-Ortiz R. Progress in the visualization and mining of chemical and target spaces. Mol Inf 2013;32:942-53
  • Van Krevelen DW. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 1950;26:269-84
  • Visser SA. Application of van Krevelen’s graphical-statistical method for the study of aquatic humic material. Environ Sci Technol 1983;17:412-17
  • Kim S, Kramer RW, Hatcher PG. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 2003;75:5336-44
  • Wu Z, Rodgers RP, Marshall AG. Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Anal Chem 2004;76:2511-16
  • Nicholls A, McGaughey GB, Sheridan RP, et al. Molecular shape and medicinal chemistry: A perspective. J Med Chem 2010;53:3862-86
  • Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 2012;52:2864-75
  • Yu MJ. Druggable chemical space and enumerative combinatorics. J Cheminf 2013;5:19
  • Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 2009;52:6752-6
  • Johnson WT, Dress KR, Edwards M. Using the golden triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 2009;19:5560-4
  • Paolini GV, Shapland RHB, van Hoorn WP, et al. Global mapping of pharmacological space. Nat Biotechnol 2006;24:805-15
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 1997;23:3-25
  • Congreve M, Carr R, Murray C, et al. A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 2003;8:876-7
  • Jhoti H, Williams G, Rees DC, et al. The ’rule of three’ for fragment-based drug discovery: where are we now? Nat Rev Drug Discov 2013;12:644-5
  • Goldberg FW, Kettle JG, Kogej T, et al. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov Today 2015;20:11-17
  • Reutlinger M, Schneider G. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model 2012;34:108-17
  • Larsson J, Gottfries J, Bohlin L, Backlund A. Expanding the ChemGPS chemical space with natural products. J Nat Prod 2005;68:985-91
  • Larsson J, Gottfries J, Muresan S, Backlund A. ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 2007;70:789-94
  • Rosén J, Lövgren A, Kogej T, et al. ChemGPS-NPWeb: chemical space navigation online. J Comput Aided Mol Des 2009;23:253-9
  • Muigg P, Rosén J, Bohlin L, Backlund A. In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochem Rev 2013;12:449-57
  • Feng Y, Campitelli M, Davis RA, Quinn RJ. Chemoinformatic analysis as a tool for prioritization of trypanocidal marine derived lead compounds. Mar Drugs 2014;12:1169-84
  • Lee C-L, Lin Y-T, Chang F-R, et al. Synthesis and biological evaluation of phenanthrenes as cytotoxic agents with pharmacophore modeling and ChemGPS-NP prediction as Topo II Inhibitors. PLoS ONE 2012;7:e37897
  • Faller B, Ottaviani G, Ertl P, et al. Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov Today 2011;16:976-84
  • Nguyen KT, Blum LC, van Deursen R, Reymond J-L. Classification of organic molecules by molecular quantum numbers. ChemMedChem 2009;4(11):1803-5
  • Ruddigkeit L, Blum LC, Reymond J-L. Visualization and virtual screening of the chemical universe database GDB-17. J Chem Inf Model 2013;53:56-65
  • Bürgi JJ, Awale M, Boss SD, et al. Discovery of potent positive allosteric modulators of the α3β2 nicotinic acetylcholine receptor by a chemical space walk in ChEMBL. ACS Chem Neurosci 2014;5:346-59
  • Ruddigkeit L, Awale M, Reymond J-L. Expanding the fragrance chemical space for virtual screening. J Cheminf 2014;6:27
  • Le Guilloux V, Colliandre L, Bourg S, et al. Visual characterization and diversity quantification of chemical libraries: 1. creation of delimited reference chemical subspaces. J Chem Inf Model 2011;51:1762-74
  • Le Guilloux V, Arrault A, Colliandre L, et al. Mining collections of compounds with screening assistant 2. J Cheminf 2012;4:20
  • Medina-Franco JL, Waddell J. Towards the bioassay activity landscape modeling in compound databases. J Mex Chem Soc 2012;56:163-8
  • Medina-Franco JL, Maggiora GM, Giulianotti MA, et al. A similarity-based data-fusion approach to the visual characterization and comparison of compound databases. Chem Biol Drug Des 2007;70:393-412
  • Owen JR, Nabney IT, Medina-Franco JL, López-Vallejo F. Visualization of molecular fingerprints. J Chem Inf Model 2011;51:1552-63
  • Medina-Franco JL, Yongye AB, Pérez-Villanueva J, et al. Multitarget structure. activity relationships characterized by activity-difference maps and consensus similarity measure. J Chem Inf Model 2011;51:2427-39
  • Pérez-Villanueva J, Santos R, Hernández-Campos A, et al. Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: Dual activity-difference (DAD) maps. Med Chem Commun 2011;2:44-9
  • Lounkine E, Kutchukian P, Petrone P, et al. Chemotography for multi-target SAR analysis in the context of biological pathways. Bioorg Med Chem 2012;20:5416-27
  • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69
  • Digles D, Ecker GF. Self-organizing maps for in silico screening and data visualization. Mol Inf 2011;30:838-46
  • Schmuker M, Schwarte F, Brück A, et al. SOMMER: self-organising maps for education and research. J Mol Model 2007;13:225-8
  • Bonachera F, Marcou G, Kireeva N, et al. Using self-organizing maps to accelerate similarity search. Bioorg Med Chem 2012;20:5396-409
  • Zettl H, Weggen S, Schneider P, et al. Exploring the chemical space of γ-secretase modulators. Trends Pharm Sci 2010;31:402-10
  • Achenbach J, Klinger F-M, Blöcher R, et al. Exploring the chemical space of multitarget ligands using aligned self-organizing maps. ACS Med Chem Lett 2013;4:1169-72
  • Virshup AM, Contreras-García J, Wipf P, et al. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J Amer Chem Soc 2013;135:7296-303
  • Reker D, Perna AM, Rodrigues T, et al. Revealing the macromolecular targets of complex natural products. Nat Chem 2014;6:1072-8
  • Kireeva N, Baskin II, Gaspar HA, et al. Generative Topographic Mapping (GTM): universal tool for data visualization, structure. activity modeling and dataset comparison. Mol Inf 2012;31:301-12
  • Bishop CM, Svensén M, Williams CKI. GTM: The generative topographic mapping. Neural Comput 1998;10:215-34
  • Gaspar HA, Baskin II, Marcou G, et al. Chemical data visualization and analysis with incremental generative topographic mapping: Big Data Challenge. J Chem Inf Model 2015;55:84-94
  • Maniyar DM, Nabney IT, Williams BS, et al. Data visualization during the early stages of drug discovery. J Chem Inf Model 2006;46:1806-18
  • Ovchinnikova SI, Bykov AA, Tsivadze AY, et al. Supervised extensions of chemography approaches: case studies of chemical liabilities assessment. J Cheminf 2014;6:20
  • Miyao T, Reker D, Schneider P, et al. Chemography of natural product space. Planta Med 2015;81:429-35
  • Kireeva N, Kuznetsov SL, Tsivadze AY. Toward navigating chemical space of ionic liquids: prediction of melting points using generative topographic maps. Ind Eng Chem Res 2012;51:14337-43
  • Gaspar HA, Marcou G, Horvath D, et al. Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). J Chem Inf Model 2013;53:3318-25
  • Mishima K, Kaneko H, Funatsu K. Development of a new de novo design algorithm for exploring chemical space. Mol Inf 2014;33:779-89
  • Tenenbaum JB, de Silva V, Langford JC. A. Global geometric framework for nonlinear dimensionality reduction. Science 2000;290:2319-23
  • Kireeva NV, Ovchinnikova SI, Tetko IV, et al. Nonlinear dimensionality reduction for visualizing toxicity data: Distance-based versus topology-based approaches. ChemMedChem 2014;9:1047-59
  • Sammon JW. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969;18:401-9
  • Agrafiotis DK. Stochastic Proximity embedding. J Comput Chem 2003;24:1215-21
  • Agrafiotis DK, Xu H, Zhu F, et al. Stochastic proximity embedding: methods and applications. Mol Inf 2010;29:758-70
  • Jacoby E, Tresadern G, Bembenek S, et al. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Drug Discov Today 2015;20(6):652-8
  • Hinton G, Roweis S. Stochastic neighbor embedding. Adv Neural Inform Process Syst 2002;15:833-40
  • Martin E, Gao E. Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel’s ravens. J Comput Aided Mol Des 2015;29:387-95
  • Tratch SS, Zefirov NS. A. Hierarchical classification scheme for chemical reactions. J Chem Inf Comp Sci 1998;38:349-66
  • Tratch SS, Molchanova MS, Zefirov NS. A unified approach to characterization of molecular composition, connectivity, and configuration: symmetry, chirality, and generation problems for the corresponding combinatorial objects. MATCH Commun Math Comput Chem 2009;61:217-66
  • Partl C, Lex A, Streit M, et al. ConTour: Data-driven exploration of multi-relational datasets for drug discovery. IEEE Trans Vis Comp Graph 2014;20:1883-92
  • Palyulin VA, Radchenko EV, Zefirov NS. Molecular field topology analysis method in QSAR studies of organic compounds. J Chem Inf Comp Sci 2000;40:659-67
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4:682-90
  • Roider HG, Pavlova N, Kirov I, et al. Drug2Gene: an exhaustive resource to explore effectively the drug-target relation network. BMC Bioinformatics 2014;15:68
  • Weskamp N, Hüllermeier E, Klebe G. Merging chemical and biological space: Structural mapping of enzyme binding pocket space. Proteins 2009;76:317-30
  • Maggiora GM, Bajorath J. Chemical space networks: a powerful new paradigm for the description of chemical space. J Comput Aided Mol Des 2014;28:795-802
  • Zhou H, Xu P, Qu H. Visualization of bipartite relations between graphs and sets. J Vis 2015;18:159-72
  • Schaller RR. Moore’s law: Past, present and future. IEEE Spectr 1997;34(6):52-9
  • Lounkine E, Wawer M, Wassermann AM, Bajorath J. SARANEA: A freely available program to mine structure. activity and structure. selectivity relationship information in compound data sets. J Chem Inf Model 2010;50:68-78
  • Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015;55:460-73
  • Thiel P, Sach-Peltason L, Ottmann C, Kohlbacher O. Blocked inverted indices for exact clustering of large chemical spaces. J Chem Inf Model 2014;54:2395-401
  • Tabei T, Tsuda K. SketchSort: Fast all pairs similarity search for large databases of molecular fingerprints. Mol Inf 2011;30:801-7
  • Wetzel S, Klein K, Renner S, et al. Interactive exploration of chemical space with Scaffold Hunter. Nat Chem Biol 2009;5:581-3
  • Klein K, Koch O, Kriege N, et al. Visual analysis of biological activity data with scaffold hunter. Mol Inf 2013;32:964-75
  • Agrafiotis DK, Wiener JJM. Scaffold Explorer: An interactive tool for organizing and mining structure. activity data spanning multiple chemotypes. J Med Chem 2010;53:5002-11
  • Segall MD, Champness EJ, Leeding C, et al. Breaking free from chemical spreadsheets. Drug Discov Today 2015. [Epub ahead of print]
  • StarDrop™. Optibrium Ltd. Cambridge, UK. 2014. Available from: http://optibrium.com/stardrop [Last accessed 23 March 2015]
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462:175-81
  • Sushko Y, Novotarskyi S, Körner R, et al. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. J Cheminf 2014;6:48
  • Varin T, Schuffenhauer A, Ertl P, et al. Mining for bioactive scaffolds with scaffold networks: Improved compound set enrichment from primary screening data. J Chem Inf Model 2011;51:1528-38
  • Adams JC, Keiser MJ, Basuino L, et al. A mapping of drug space from the viewpoint of small molecule metabolism. PLoS Comp Biol 2009;5:e1000474
  • Langdon SR, Brown N, Blagg J. Scaffold diversity of exemplified medicinal chemistry space. J Chem Inf Model 2011;51:2174-85
  • Strobelt H, Bertini E, Braun J, et al. HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform. BMC Bioinformatics 2012;13:S4
  • Berthold MR, Cebron N, Dill F, et al. KNIME: The Konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, editors. Data analysis, machine learning and applications. Springer; Berlin: 2008. p. 319-26
  • Rabal O, Oyarzabal J. Using novel descriptor accounting for ligand−receptor interactions to define and visually explore biologically relevant chemical space. J Chem Inf Model 2012;52:1086-102
  • Rabal O, Oyarzabal J. Biologically relevant chemical space navigator: from patent and structure−activity relationship analysis to library acquisition and design. J Chem Inf Model 2012;52:3123-37
  • Gütlein M, Karwath A, Kramer S. CheS-Mapper - chemical space mapping and visualization in 3D. J Cheminf 2012;4:7
  • Gütlein M, Karwath A, Kramer S. CheS-Mapper 2.0 for visual validation of (Q)SAR models. J Cheminf 2014;6:41
  • Awale M, van Deursen R, Reymond J-L. MQN-Mapplet: Visualization of chemical space with interactive maps of drugbank, ChEMBL, PubChem, GDB-11, and GDB-13. J Chem Inf Model 2013;53:509-18
  • Fiannaca A, La Rosa M, Di Fatta G, et al. The BioDICE Taverna plugin for clustering and visualization of biological data: a workflow for molecular compounds exploration. J Cheminf 2014;6:24
  • Wolstencroft K, Haines R, Fellows D, et al. The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 2013;41:W557-61
  • Bajorath J. Modeling of activity landscapes for drug discovery. Expert Opin Drug Discov 2012;7:463-73
  • Butlerow A. Einiges über die chemische Structur der Körper. Z Chem 1861;4:549-60
  • Schamberger J, Grimm M, Steinmeyer A, Hillisch A. Rendezvous in chemical space? comparing the small molecule compound libraries of Bayer and Schering. Drug Discov Today 2011;16:636-41
  • Standardizer 14.11.3.0. Chemaxon. 2014. Available from: www.chemaxon.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.