1,685
Views
12
CrossRef citations to date
0
Altmetric
Editorial

MicroRNA in neurodegenerative drug discovery: the way forward?

& , DPhil (Chief)

Bibliography

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33
  • Boudreau R, Jiang P, Gilmore et al. Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 2014;81(2):294-305
  • Jeffrey M, Halliday WG, Bell J, et al. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 2000;26:41-54
  • Mallucci GR, White MD, Farmer M, et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 2007;53:325-35
  • Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front. Cell. Neurosci 2013;7:265
  • Majer A, Boese A, Booth SA. The role of microRNAs in neurodegenerative diseases: implications for early detection and treatment. In: Mallick B, Ghosh Z, editors. Regulatory RNAs. Springer-Verlag Berlin Heidelberg; Berlin Heidelberg USA; 2012. p. 443-73. doi:10.1007/978-3-642-22517-8_18
  • Tan CL, Plotkin JL, Venø MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science 2013;342:1254-8
  • Kocerha J, Prucha MS, Zhao D, Chan AWS. MicroRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol Brain 2014;7:46
  • Nolan K, Mitchem MR, Jimenez-Mateos EM, et al. Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci 2014;53:231-41
  • Shioya M, Obayashi S, Tabunoki H, et al. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010;36(4):320-30
  • Majer A, Medina SJ, Niu Y, et al. Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012;8(11):e1003002
  • Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 2008;105(17):6415-20
  • Jiao J, Herl LD, Farese RV, Gao FB. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS One 2010;5:e10551
  • Cheng PH, Li CL, Chang YF, et al. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 2013;93:306-12
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: progress and possibilities. Nat Methods 2007;4(9):721-6
  • Lu Y, Xiao J, Lin H, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009;37:e24
  • Santaris pharma. Available from: www.santaris.com
  • MiRagen therapeutics. Available from: http://miragentherapeutics.com/
  • Mirna therapeutics. Available from: http://www.mirnarx.com/
  • Regulus therapeutics. Available from: http://www.regulusrx.com/
  • Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368:1685-94
  • Van Rooij E, Purcell AL, Levin A. Developing microRNA therapeutics. Circ Res 2012;110:496-507
  • Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006;103:12481-610
  • Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011;17:211-15
  • Shi S, Han L, Gong T, et al. Systemic delivery of microRNA-34a for cancer stem cell therapy. Chem Int Ed Engl 2013;52:3901-5
  • Kang S, Roh Y, Lau A, et al. Establishment and characterization of Prnp knockdown neuroblastoma cells using dual microRNA-mediated RNA interference. Prion 2011;5(2):93-102
  • Lau P, Figerio CS, De Strooper B. Variance in the identification of microRNAs deregulated in Alzheimer’s disease and possible role of lincRNAs in the pathology: the need of larger datasets. Ageing Res Rev 2014;17:43-53
  • Salta E, Lau P, Frigerio CS, et al. A Self-Organizing miR-132/Ctbp2 Circuit Regulates Bimodal Notch Signals and Glial Progenitor Fate Choice during Spinal Cord Maturation. Dev Cell 2014;30:1-14
  • Ofengeim D, Shi P, Miao B, et al. Identification of small molecule inhibitors of neurite loss induced by Aβ peptide using high content screening. J Biol Chem 2012;287(12):8714-23
  • Zhang M, Luo G, Zhou Y, et al. Phenotypic screens targeting neurodegenerative diseases. J Biomol Screen 2014;19(1):1-16
  • Watmuff B, Hartley BJ, Hunt CP, et al. Pluripotent stem cell-derived dopaminergic neurons as models of neurodegeneration. Future Neurol 2013;8:649-61
  • Doege CA, Abeliovich A. Dementia in a dish. Biol Psychiatry 2014;75:558-64
  • Boxer AL, Gold M, Huey E, et al. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 2013;9:176-88
  • Saba R, Medina SJ, Booth SA. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum Mutat 2014;35(10):1233-48
  • Boudreau RL, Rodriguez-Lebron E and Davidson BL. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 2011;20(1):21-7
  • Chang T, Shi P, Steinmeyer JD, et al. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery. Integr Biol 2014;6:926
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452:591-8
  • Boudreau RL, Martins I, Davidson BL. Artificial MicroRNAs as siRNA Shuttles: improved safety as compared to shrnas in vitro and in vivo. Mol Therapy 2009;17(1):169-75
  • Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9:654-9
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29(4):341-5
  • O’Mahony AM, Godinho B MDC, Ogier J, et al. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem Neurosci 2012;3:744-52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.