337
Views
21
CrossRef citations to date
0
Altmetric
Reviews

QSAR studies in the discovery of novel type-II diabetic therapies

&

Bibliography

  • Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
  • WHO. WHO factsheets. 2015. Available from: http://wwwwhoint/mediacentre/factsheets/fs312/en/.
  • Guariguata L, Whiting D, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–149.
  • de Boer IH. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):24–30.
  • Aiello LP. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):17–23.
  • Huang ES, Laiteerapong N, Liu JY, et al. Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study. JAMA Intern Med. 2014;174(2):251–258.
  • Dart AB, Martens PJ, Rigatto C, et al. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care. 2014;37(2):436–443.
  • Ahrén B. Creative use of novel glucose-lowering drugs for type 2 diabetes: where will we head in the next 50 years? Diabetologia. 2015;58(8):1–5.
  • Dutta S. Application of qsar in drug design and drug discovery. Drugs. 2015;9:10.
  • Vaidya A, Jain S, Jain S, et al. Quantitative structure-activity relationships: a novel approach of drug design and discovery. J Pharm Sci Pharmacol. 2014;1(3):219–232.
  • Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169.
  • Plutzky J, Viberti G, Haffner S. Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications. 2002;16(6):401–415.
  • Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65(3):385–411.
  • Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013;12(2):153–175.

• This review discusses important validation methods for quantitative structure–activity relationship models.

  • Mittermayer F, Caveney E, Oliveira CD, et al. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev. 2015;11(1):17–31.
  • Taygerly JP, McGee LR, Rubenstein SM, et al. Discovery of INT131: a selective PPARγ modulator that enhances insulin sensitivity. Bioorg Med Chem. 2013;21(4):979–992.
  • Roy K, Mitra I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen. 2011;14(6):450–474.
  • Taha MO, Habash M, Al-Hadidi Z, et al. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inf Model. 2011;51(3):647–669.
  • Al-Sha’er MA, Taha MO. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model. 2012;18(11):4843–4863.
  • Jaradat N, Khanfar M, Habash M, et al. Combining docking-based comparative intermolecular contacts analysis and k-nearest neighbor correlation for the discovery of new check point kinase 1 inhibitors. J Comput Aided Mol Des. 2015;29(6):561–581.
  • Taha M, Habash M, Khanfar M. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. J Comput Aided Mol Des. 2014;28(5):509–547.

•• This review provides an overview of different feature selection techniques applied in quantitative structure–activity relationship modelling.

  • Goodarzi M, Dejaegher B, Heyden YV. Feature selection methods in QSAR studies. J AOAC Int. 2012;95(3):636–651.
  • Pratim Roy P, Paul S, Mitra I, et al. On two novel parameters for validation of predictive QSAR models. Molecules. 2009;14(5):1660.
  • Roy K, Chakraborty P, Mitra I, et al. Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: emphasis on scaling of response data. J Comput Chem. 2013;34(12):1071–1082.

•• The following three articles clarify good practices in quantitative structure–activity relationship modelling.

• The following four articles deal with quantitative structure–activity relationship modelability of compound datasets and activity cliffs.

  • Koutsoukas A, Paricharak S, Galloway WRJD, et al. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J Chem Inf Model. 2014;54(1):230–242.
  • Golbraikh A, Muratov E, Fourches D, et al. Data set modelability by QSAR. J Chem Inf Model. 2014;54(1):1–4.
  • Guha R, Van Drie JH. Structure−activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model. 2008;48(3):646–658.
  • Seebeck B, Wagener M, Rarey M. From activity cliffs to target-specific scoring models and pharmacophore hypotheses. Chem Med Chem. 2011;6(9):1630–1639.
  • Stumpfe D, Hu Y, Dimova D, et al. Recent progress in understanding activity cliffs and their utility in medicinal chemistry: miniperspective. J Med Chem. 2013;57(1):18–28.
  • Hu Y, Stumpfe D, Bajorath J. Advancing the activity cliff concept. F1000Research. 2013;2:199.

•• The following three articles discuss pitfalls and errors in quantitative structure–activity relationship modelling.

  • Dearden J, Cronin M, Kaiser K. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res. 2009;20(3–4):241–266.
  • Cramer RD. The inevitable QSAR renaissance. J Comput Aided Mol Des. 2012;26(1):35–38.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57(12):4977–5010.
  • Kulkarni SS, Gediya LK, Kulkarni VM. Three-dimensional quantitative structure activity relationships (3-D-QSAR) of antihyperglycemic agents. Bioorg Med Chem. 1999;7(7):1475–1485.
  • Kurogi Y. Three-dimensional quantitative structure-activity relationships (3D-QSAR) of antidiabetic thiazolidinediones. Drug Des Discov. 1999;16(2):109–118.
  • So S-S, Karplus M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J Comput Aided Mol Des. 1999;13(3):243–258.
  • Bharatam P, Patel D, Adane L, et al. Modeling and informatics in designing anti-diabetic agents. Curr Pharm Des. 2007;13(34):3518–3530.
  • Luan F, Xu X, Liu HT, et al. QSAR studies of PTP1B inhibitors: recent advances and perspectives. Curr Med Chem. 2012;19(25):4208–4217.
  • Alexiou P, Pegklidou K, Chatzopoulou M, et al. Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem. 2009;16(6):734–752.
  • Khanna S, Bahal R, Bharatam PV. In silico studies on PPARγ agonistic heterocyclic systems. In: Gupta SP, editor. QSAR and molecular modeling studies in heterocyclic drugs I. Berlin: Springer; 2006. p. 149–180.
  • Hayes JM, Leonidas DD. Computation as a tool for glycogen phosphorylase inhibitor design. Mini Rev Med Chem. 2010;10(12):1156–1174.
  • Fang J, Huang D, Zhao W, et al. A new protocol for predicting novel GSK-3beta ATP competitive inhibitors. J Chem Inf Model. 2011;51(6):1431–1438.
  • Crisan L, Pacureanu L, Avram S, et al. PLS and shape-based similarity analysis of maleimides–GSK-3 inhibitors. J Enzyme Inhib Med Chem. 2014;29(4):599–610.
  • Akhtar M, Bharatam PV. 3D-QSAR and molecular docking studies on 3-anilino-4-arylmaleimide derivatives as glycogen synthase kinase-3beta inhibitors. Chem Biol Drug Des. 2012;79(4):560–571.
  • Fu G, Liu S, Nan XF, et al. Quantitative structure-activity relationship analysis and a combined ligand-based/structure-based virtual screening study for glycogen synthase kinase-3. Mol Inform. 2014;33(9):627–640.
  • Prasanna S, Daga PR, Xie A, et al. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking. J Comput Aided Mol Des. 2009;23(2):113–127.
  • Lather V, Kristam R, Saini JS, et al. QSAR models for prediction of glycogen synthase kinase-3β inhibitory activity of indirubin derivatives. QSAR Comb Sci. 2008;27(6):718–728.
  • Patel DS, Bharatam PV. Selectivity criterion for pyrazolo[3,4-b]pyrid[az]ine derivatives as GSK-3 inhibitors: CoMFA and molecular docking studies. Eur J Med Chem. 2008;43(5):949–957.
  • Taha MO, Bustanji Y, Al-Ghussein MAS, et al. Pharmacophore modeling, quantitative structure–activity relationship analysis, and in silico screening reveal potent glycogen synthase kinase-3β inhibitory activities for cimetidine, hydroxychloroquine, and gemifloxacin. J Med Chem. 2008;51(7):2062–2077.
  • Dessalew N, Patel DS, Bharatam PV. 3D-QSAR and molecular docking studies on pyrazolopyrimidine derivatives as glycogen synthase kinase-3beta inhibitors. J Mol Graph Model. 2007;25(6):885–895.
  • Malla P, Kumar R, Kumar M. Validation of formylchromane derivatives as protein tyrosine phosphatase 1B inhibitors by pharmacophore modeling, atom-based 3D-QSAR and docking studies. Chem Biol Drug Des. 2013;82(1):71–80.
  • Malla P, Kumar R, Mattewal SK, et al. A paradigm for development of novel PTP 1B inhibitors: pharmacophore modelling, atom-based 3D-QSAR and docking studies. Med Chem Res. 2014;23(2):927–938.
  • Thareja S, Kokil GR, Aggarwal S, et al. Sulphonamides as inhibitors of protein tyrosine phosphatase 1B: a three-dimensional quantitative structure-activity relationship study using self-organizing molecular field analysis approach. Chem Pharm Bull. 2010;58(4):526–532.
  • Thareja S, Aggarwal S, Bhardwaj T, et al. Self-organizing molecular field analysis of 2, 4-thiazolidinediones: a 3D-QSAR model for the development of human PTP1B inhibitors. Eur J Med Chem. 2010;45(6):2537–2546.
  • Cheng Y, Zhou M, Tung CH, et al. Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg Med Chem Lett. 2010;20(11):3329–3337.
  • Ma Y, Jin YY, Wang YL, et al. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation. Chem Biol Drug Des. 2014;83(6):697–709.
  • Sachan N, Kadam SS, Kulkarni VM. Human protein tyrosine phosphatase 1B inhibitors: QSAR by genetic function approximation. J Enzyme Inhib Med Chem. 2007;22(3):267–276, 371–373.
  • Sobhia ME, Bharatam PV. Comparative molecular similarity indices analysis (CoMSIA) studies of 1,2-naphthoquinone derivatives as PTP1B inhibitors. Bioorg Med Chem. 2005;13(6):2331–2338.
  • Nair PC, Sobhia ME. CoMFA based de novo design of pyridazine analogs as PTP1B inhibitors. J Mol Graph Model. 2007;26(1):117–123.
  • Taha MO, Bustanji Y, Al-Bakri AG, et al. Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. J Mol Graph Model. 2007;25(6):870–884.
  • Xu J, Yuan H, Ran T, et al. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling. J Mol Recognit. 2015;28(8);467–479.
  • Zhi H, Zheng J, Chang Y, et al. QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA. J Mol Struct. 2015;1098:199–205.
  • Vyas VK, Bhatt HG, Patel PK, et al. CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents. SAR QSAR Environ Res. 2013;24(7):519–551.
  • Nakka S, Guruprasad L. Structural insights into the active site of human sodium dependent glucose co-transporter 2: homology modelling, molecular docking, and 3D-QSAR studies. Aust J Chem. 2012;65(9):1314–1324.
  • Suryanarayanan V, Sudha A, Rajamanikandan S, et al. Atom-based 3D QSAR studies on novel N-β-d-xylosylindole derivatives as SGLT2 inhibitors. Med Chem Res. 2013;22(2):615–624.
  • Tang C, Zhu X, Huang D, et al. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. J Mol Model. 2012;18(6):2795–2804.
  • Prasoona RK, Jyoti A, Mukesh Y, et al. Optimization of Gaussian Kernel Function in Support Vector Machine aided QSAR studies of C-aryl glucoside SGLT2 inhibitors. Interdiscip Sci. 2013;5(1):45–52.
  • Guasch L, Sala E, Valls C, et al. Development of docking-based 3D-QSAR models for PPARgamma full agonists. J Mol Graph Model. 2012;36:1–9.
  • Khanna S, Sobhia ME, Bharatam PV. Additivity of molecular fields: coMFA study on dual activators of PPARalpha and PPARgamma. J Med Chem. 2005;48(8):3015–3025.
  • Sundriyal S, Bharatam PV. ‘Sum of activities’ as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists. Eur J Med Chem. 2009;44(1):42–53.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Quantitative structure-activity relationships for PPAR-γ binding and gene transactivation of tyrosine-based agonists using multivariate statistics. Chem Biol Drug Des. 2008;72(4):257–264.
  • Liao C, Xie A, Zhou J, et al. 3D QSAR studies on peroxisome proliferator-activated receptor γ agonists using CoMFA and CoMSIA. J Mol Model. 2004;10(3):165–177.
  • Gee VM, Wong FS, Ramachandran L, et al. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists using molecular modeling method. J Comput Aided Mol Des. 2014;28(11):1143–1151.
  • Maltarollo VG, Homem-de-Mello P, Honorio KM. Role of physicochemical properties in the activation of peroxisome proliferator-activated receptor delta. J Mol Model. 2011;17(10):2549–2558.
  • Garcia TS, Silva DC, Gertrudes JC, et al. Molecular features related to the binding mode of PPARdelta agonists from QSAR and docking analyses. SAR QSAR Environ Res. 2013;24(2):157–173.
  • Al-Najjar BO, Wahab HA, Tengku Muhammad TS, et al. Discovery of new nanomolar peroxisome proliferator-activated receptor gamma activators via elaborate ligand-based modeling. Eur J Med Chem. 2011;46(6):2513–2529.
  • Patil S, Sharma R, Abhishek A. Comparative study to predict dipeptidyl peptidase IV inhibitory activity of β-amino amide scaffold. Indian J Pharm Sci. 2015;77(2):142–150.
  • Jain SV, Ghate M. Atom-based pharmacophore modeling, CoMFA/CoMSIA-based 3D-QSAR studies and lead optimization of DPP-4 inhibitors for the treatment of type 2 diabetes. Med Chem Res. 2014;23(7):3436–3450.
  • Murugesan V, Sethi N, Prabhakar YS, et al. CoMFA and CoMSIA of diverse pyrrolidine analogues as dipeptidyl peptidase IV inhibitors: active site requirements. Mol Divers. 2011;15(2):457–466.
  • Paliwal S, Seth D, Yadav D, et al. Development of a robust QSAR model to predict the affinity of pyrrolidine analogs for dipeptidyl peptidase IV (DPP- IV). J Enzyme Inhib Med Chem. 2011;26(1):129–140.
  • Jiang YK. Molecular docking and 3D-QSAR studies on beta-phenylalanine derivatives as dipeptidyl peptidase IV inhibitors. J Mol Model. 2010;16(7):1239–1249.
  • Saqib U, Siddiqi MI. 3D-QSAR studies on triazolopiperazine amide inhibitors of dipeptidyl peptidase-IV as anti-diabetic agents. SAR QSAR Environ Res. 2009;20(5–6):519–535.
  • Al-masri IM, Mohammad MK, Taha MO. Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. Chem Med Chem. 2008;3(11):1763–1779.
  • Pissurlenkar RR, Shaikh MS, Coutinho EC. 3D-QSAR studies of Dipeptidyl peptidase IV inhibitors using a docking based alignment. J Mol Model. 2007;13(10):1047–1071.
  • Zeng J, Liu G, Tang Y, et al. 3D-QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA. J Mol Model. 2007;13(9):993–1000.
  • Gokhale KM. Role of glycogen synthase kinase (GSK-3) in type-2 diabetes and GSK-3 inhibitors as potential anti-diabetics. Int J Pharm Phytopharmacol Res. 2013;3(3):196–199.
  • Yarchoan M, Arnold SE. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes. 2014;63(7):2253–2261.
  • Arfeen M, Bharatam PV. Design of glycogen synthase kinase-3 inhibitors: an overview on recent advancements. Curr Pharm Des. 2013;19(26):4755–4775.
  • Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol. 2013;86(2):191–199.
  • Avrahami L, Licht-Murava A, Eisenstein M, et al. GSK-3 inhibition: achieving moderate efficacy with high selectivity. Biochim Biophys Acta. 2013;1834(7):1410–1414.
  • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–1051.
  • He R-J, Yu Z-H, Zhang R-Y, et al. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin. 2014;35:1227–1246.
  • Gurzov EN, Stanley WJ, Brodnicki TC, et al. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab. 2015;26(1):30–39.
  • Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011–2014). Expert Opin Ther Pat. 2014;24(10):1101–1115.
  • Potenza M, Rayfield EJ. Targeting the incretin system in type 2 diabetes mellitus. Mt Sinai J Med. 2009;76(3):244–256.
  • Karagiannis T, Paschos P, Paletas K, et al. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ. 2012;344:e1369.
  • Agrawal R, Jain P, Narayan Dikshit S, et al. Atom-based 3D-QSAR and docking studies of various 3-aminomethyl-1, 2-dihydro-4-phenyl-1-isoquinolones derivatives as an effective DPP-IV inhibitors and its validation. Immunol Endocr Metabol Agents Med Chem. 2013;13(3):221–231.
  • Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diabetes Vasc Dis Res. 2015;12(2):78–89.
  • Ghosh RK, Ghosh SM, Chawla S, et al. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J Clin Pharmacol. 2012;52(4):457–463.
  • Ansquer JC, Foucher C. The PPAR system in diabetes. In: Jenkins AJ, Toth PP, Lyons TJ, editors. Lipoproteins in diabetes mellitus. New York (NY): Springer; 2014. p. 357–372.
  • Liu Z-M, Hu M, Chan P, et al. Early investigational drugs targeting PPAR-α for the treatment of metabolic disease. Expert Opin Investig Drugs. 2015;24(5):611–621.
  • Ahmadian M, Suh JM, Hah N, et al. PPAR [gamma] signaling and metabolism: the good, the bad and the future. Nat Med. 2013;99(5):557–566.
  • Maiese K, Chong ZZ, Shang YC, et al. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov. 2013;8(1):35–48.
  • Wright MB, Bortolini M, Tadayyon M, et al. Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28(11):1756–1768.
  • Shah P, Mittal A, Bharatam PV. CoMFA analysis of dual/multiple PPAR activators. Eur J Med Chem. 2008;43(12):2784–2791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.