230
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Whole animal HTS of small molecules for antifungal compounds

, &
Pages 177-184 | Received 03 Oct 2015, Accepted 17 Nov 2015, Published online: 14 Dec 2015

References

  • Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
  • Antachopoulos C. Invasive fungal infections in congenital immunodeficiencies. Clin Microbiol Infect. 2010;16(9):1335–1342.
  • Edmond MB, Wallace SE, McClish DK, et al. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis. 1999;29(2):239–244.
  • Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis. 2003;36(Suppl 1):S31–41.
  • Macphail GL, Taylor GD, Buchanan-Chell M, et al. Epidemiology, treatment and outcome of candidemia: a five-year review at three Canadian hospitals. Mycoses. 2002;45(5–6):141–145.
  • Miller LG, Hajjeh RA, Edwards JE Jr. Estimating the cost of nosocomial candidemia in the United States. Clin Infect Dis. 2001;32(7):1110.
  • Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503–535.
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36(1):1–53.
  • Rentz AM, Halpern MT, Bowden R. The impact of candidemia on length of hospital stay, outcome, and overall cost of illness. Clin Infect Dis. 1998;27(4):781–788.
  • Richardson M, Lass-Florl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008;14(Suppl 4):5–24.
  • Neoh CF, Slavin M, Chen SC, et al. Echinocandins in the treatment of candidaemia and invasive candidiasis: clinical and economic perspectives. Int J Antimicrob Agents. 2014;43(3):207–214.
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208.
  • Hopkins AL, Bickerton GR. Drug discovery: know your chemical space. Nat Chem Biol. 2010;6(7):482–483.
  • Segalat L. Drug discovery: here comes the worm. ACS Chem Biol. 2006;1(5):277–278.
  • Moy TI, Conery AL, Larkins-Ford J, et al. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol. 2009;4(7):527–533.
  • O’Rourke EJ, Conery AL, Moy TI. Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol. 2009;486:57–75.
  • Pukkila-Worley R, Holson E, Wagner F, et al. Antifungal drug discovery through the study of invertebrate model hosts. Curr Med Chem. 2009;16(13):1588–1595.
  • Pukkila-Worley R, Mylonakis E. From the outside in and the inside out: antifungal immune responses in Caenorhabditis elegans. Virulence. 2010;1(3):111–112.
  • Apidianakis Y, Rahme LG, Heitman J, et al. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell. 2004;3(2):413–419.
  • Chamilos G, Lionakis MS, Lewis RE, et al. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis. 2006;193(7):1014–1022.
  • Lionakis MS, Lewis RE, May GS, et al. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis. 2005;191(7):1188–1195.
  • Aperis G, Mylonakis E. Newer triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations. Expert Opin Investig Drugs. 2006;15(6):579–602.
  • Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol. 2010;10(1):47–58.
  • Consortium CeS. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282(5396):2012–2018.
  • Chen N, Lawson D, Bradnam K, et al. WormBase as an integrated platform for the C. elegans ORFeome. Genome Res. 2004;14(10B):2155–2161.
  • Harris TW, Antoshechkin I, Bieri T, et al. WormBase: a comprehensive resource for nematode research. Nucleic Acids Res. 2010;38(Database issue):D463–7.
  • Mylonakis E, Ausubel FM, Tang RJ, et al. The art of serendipity: killing of Caenorhabditis elegans by human pathogens as a model of bacterial and fungal pathogenesis. Expert Rev Anti Infect Ther. 2003;1(1):167–173.

• The author describes the utility of C. elegans in the study of bacterial and fungal pathogenesis.

  • Byerly L, Cassada RC, Russell RL. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976;51(1):23–33.
  • Aballay A, Ausubel FM. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol. 2002;5(1):97–101.
  • Avery L, Shtonda BB. Food transport in the C. elegans pharynx. J Exp Biol. 2003;206(Pt 14):2441–2457.
  • Glavis-Bloom J, Muhammed M, Mylonakis E. Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol. 2012;710:11–17.
  • Baldauf SL, Palmer JD. Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993;90(24):11558–11562.
  • Desalermos A, Tan X, Rajamuthiah R, et al. A multi-host approach for the systematic analysis of virulence factors in Cryptococcus neoformans. J Infect Dis. 2015;211(2):298–305.
  • Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A. 2001;98(19):10892–10897.
  • London R, Orozco BS, Mylonakis E. The pursuit of cryptococcal pathogenesis: heterologous hosts and the study of cryptococcal host-pathogen interactions. FEMS Yeast Res. 2006;6(4):567–573.
  • Pukkila-Worley R, Peleg AY, Tampakakis E, et al. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell. 2009;8(11):1750–1758.
  • Muhammed M, Fuchs BB, Wu MP, et al. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system. Med Mycol. 2012;50(5):488–496.
  • Kim DH, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. 2002;297(5581):623–626.
  • Means TK, Mylonakis E, Tampakakis E, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009;206(3):637–653.
  • Irazoqui JE, Ausubel FM. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Caenorhabditis elegans as a model to study tissues involved in host immunity and microbial pathogenesis. Clin Exp Immunol. 2010;160(1):48–57.
  • Breger J, Fuchs BB, Aperis G, et al. Antifungal chemical compounds identified using a C. Elegans pathogenicity assay. PLoS Pathog. 2007;3(2):e18.

•• This paper delineates the first high-throughput assay using the C. elegans–C. albicans system. The authors describe the key steps for the first screen.

  • Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol. 2006;9(4):346–351.
  • Rajamuthiah R, Fuchs BB, Jayamani E, et al. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus. PLoS One. 2014;9(2):e89189.
  • Sifri CD, Begun J, Ausubel FM. The worm has turned–microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005;13(3):119–127.
  • Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A. 1999;96(2):715–720.
  • Moy TI, Ball AR, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A. 2006;103(27):10414–10419.
  • Desalermos A, Muhammed M, Glavis-Bloom J, et al. Using C. elegans for antimicrobial drug discovery. Expert Opin Drug Discov. 2011;6(6):645–652.

•• This paper reports the use of C. elegans in the antimicrobial drug discovery. It also covers the rule of C. elegans in microbial pathogenesis.

  • Tampakakis E, Okoli I, Mylonakis EA. C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc. 2008;3(12):1925–1931.

•• The authors describe a detailed methodology for using the C. elegans–C. albicans model in high-throughput screening for antifungal drug discovery.

  • Anastassopoulou CG, Fuchs BB, Mylonakis E. Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des. 2011;17(13):1225–1233.
  • Muhammed M, Coleman JJ, Mylonakis E. Caenorhabditis elegans: a nematode infection model for pathogenic fungi. Methods Mol Biol. 2012;845:447–454.
  • Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol. 2010;5(3):321–332.
  • Wahlby C, Kamentsky L, Liu ZH, et al. An image analysis toolbox for high-throughput C. elegans assays. Nat Methods. 2012;9(7):714–716.
  • Jospin M, Jacquemond V, Mariol MC, et al. The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J Cell Biol. 2002;159(2):337–348.
  • Kobet RA, Pan X, Zhang B, et al. Caenorhabditis elegans: a model system for anti-cancer drug discovery and therapeutic target identification. Biomol Ther (Seoul). 2014;22(5):371–383.
  • Okoli I, Coleman JJ, Tampakakis E, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One. 2009;4(9):e7025.

• This article describes the second screen of compounds for antifungal agents’ discovery using the C. elegans–C. albicans model. It also delineates an improvement in the methodology of conducting the experiments compared to the previous assay.

  • Di Santo R. Natural products as antifungal agents against clinically relevant pathogens. Nat Prod Rep. 2010;27(7):1084–1098.
  • Jiang Z, Liu N, Hu D, et al. The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chem Commun (Camb). 2015;51(78):14648–14651.
  • He X, Jiang Y, Zhang Y, et al. Discovery of highly potent triazoleantifungal agents with piperidine-oxadiazole side chains. Med Chem Commun. 2015;6(4):653–664.
  • Liu Y, Wang Y, Dong G, et al. Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure–activity relationships. Med Chem Commun. 2013;4(12):1551–1561.
  • Zhou YM, Shao L, Li JA, et al. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans. Biosci Biotechnol Biochem. 2011;75(9):1746–1751.
  • Kino T, Hatanaka H, Miyata S, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40(9):1256–1265.
  • Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo). 1987;40(9):1249–1255.
  • Wenzel RP, Gennings C. Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis. 2005;41(Suppl 6):S389–93.
  • Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–1111.
  • Pfaller MA, Lockhart SR, Pujol C, et al. Hospital specificity, region specificity, and fluconazole resistance of Candida albicans bloodstream isolates. J Clin Microbiol. 1998;36(6):1518–1529.
  • Pfaller MA, Gerarden T. Susceptibility of clinical isolates of Candida spp. to terconazole and other azole antifungal agents. Diagn Microbiol Infect Dis. 1989;12(6):467–471.
  • Pfaller MA, Jones RN, Messer SA, et al. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and control of pathogens of epidemiologic. Diagn Microbiol Infect Dis. 1998;30(2):121–129.
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, et al. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov. 2010;9(9):719–727.
  • Petrikkos G, Skiada A. Recent advances in antifungal chemotherapy. Int J Antimicrob Agents. 2007;30(2):108–117.
  • Wang Y. Looking into Candida albicans infection, host response, and antifungal strategies. Virulence. 2015;6(4):307–308.
  • Souza AC, Fuchs BB, Pinhati HM, et al. Candida parapsilosis resistance to fluconazole: molecular mechanisms and in vivo impact in infected Galleria mellonella larvae. Antimicrob Agents Chemother. 2015;59(10):6581–6587.
  • Coleman JJ, Mylonakis E. Efflux in fungi: la piece de resistance. PLoS Pathog. 2009;5(6):e1000486.
  • Zhang SQ, Miao Q, Li LP, et al. Mutation of G234 amino acid residue in Candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport. Virulence. 2015;6(6):611–619.
  • Buckingham SD, Partridge FA, Sattelle DB. Automated, high-throughput, motility analysis in Caenorhabditis elegans and parasitic nematodes: applications in the search for new anthelmintics. Int J Parasitol Drugs Drug Resist. 2014;4(3):226–232.
  • Burns AR, Kwok TC, Howard A, et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc. 2006;1(4):1906–1914.
  • Macarron R, Hertzberg RP. Design and implementation of high throughput screening assays. Methods Mol Biol. 2002;190:1–29.
  • Macarron R, Hertzberg RP. Design and implementation of high-throughput screening assays. Methods Mol Biol. 2009;565:1–32.
  • Coleman JJ, Ghosh S, Okoli I, et al. Antifungal activity of microbial secondary metabolites. PLoS One. 2011;6(9):e25321.
  • Cole RD, Anderson GL, Williams PL. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol Appl Pharmacol. 2004;194(3):248–256.
  • Cox GN, Kusch M, Edgar RS. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol. 1981;90(1):7–17.
  • Schreiber SL, Kotz JD, Li M, et al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell. 2015;161(6):1252–1265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.