290
Views
15
CrossRef citations to date
0
Altmetric
Review

Novel drug discovery for Chagas disease

&
Pages 447-455 | Received 23 Aug 2015, Accepted 29 Feb 2016, Published online: 01 Apr 2016

References

  • World Health Organisation. Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report in neglected tropical diseases. Geneva: World Health Organisation; 2013.
  • Bern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis. 2009;49(5):e52–e54. doi:10.1086/605091.
  • Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions–a comprehensive review. Mem Inst Oswaldo Cruz. 2015;110(3):277–282. doi:10.1590/0074-0276140362.
  • Kirchhoff LV, Paredes P, Lomeli-Guerrero A, et al. Transfusion-associated Chagas disease (American trypanosomiasis) in Mexico: implications for transfusion medicine in the United States. Transfusion. 2006;46(2):298–304. doi:10.1111/j.1537-2995.2006.00715.x.
  • Kransdorf EP, Zakowski PC, Kobashigawa JA. Chagas disease in solid organ and heart transplantation. Curr Opin Infect Dis. 2014;27(5):418–424. doi:10.1097/QCO.0000000000000088.
  • Sánchez LV, Ramirez JD. Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology. 2013;140(2):147–159. doi:10.1017/S0031182012001394.
  • Zingales B, Andrade SG, Briones MRS, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–1054.
  • Vago AR, Andrade LO, Leite AA, et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol. 2000;156(5):1805–1809.
  • Lewis MD, Llewellyn MS, Yeo M, et al. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids. PLoS Negl Trop Dis. 2011;5(10):e1363. doi:10.1371/journal.pntd.0001363.
  • Macedo AEAM, Machado CR, Oliveira RP, et al. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease. Mem Inst Oswaldo Cruz. 2004;99(1):1–12. doi:S0074-02762004000100001.
  • Miles MA, Llewellyn MS, Lewis MD, et al. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology. 2009;136(12):1509–1528. doi:10.1017/S0031182009990977.
  • Coura JER, Borges-Pereira JE. Chronic phase of Chagas disease: why should it be treated? A comprehensive review. Mem Inst Oswaldo Cruz. 2011;106(6):641–645.
  • Rassi AJ, Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2012;26(2):275–291. doi:10.1016/j.idc.2012.03.002.
  • de Freitas VLT, da Silva SCV, Sartori AM, et al. Real-time PCR in HIV/Trypanosoma cruzi coinfection with and without Chagas disease reactivation: association with HIV viral load and CD4 level. PLoS Negl Trop Dis. 2011;5(8):e1277. DOI:10.1371/journal.pntd.0001370.
  • Viotti R, Vigliano C, Lococo B, et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med. 2006;144(10):724–734.
  • Pinazo MI-JUS, Espinosa G, Cortes-Lletget C, et al. Immunosuppression and Chagas disease: a management challenge. PLoS Negl Trop Dis. 2013;7(1):e1965. doi:10.1371/journal.pntd.0001965.
  • Pérez-Molina JA, Pérez-Ayala A, Moreno S, et al. Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. J Antimicrob Chemother. 2009;64(6):1139–1147. doi:10.1093/jac/dkp357.
  • Yun O, Lima MA, Ellman T, et al. Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of medecins sans frontieres. PLoS Negl Trop Dis. 2009;3(7):e488. doi:10.1371/journal.pntd.0000488.
  • Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–1306. doi:10.1056/NEJMoa1507574.
  • Molina I, Gomez I Prat J, Salvador F, et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med. 2014;370(20):1899–1908. doi:10.1056/NEJMoa1313122.
  • Zingales B, Zingales B, Miles MA, et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz. 2014;109(6):828–833. doi:10.1590/0074-0276140156.
  • Buckner FS, Verlinde CL, La Flamme AC, et al. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother. 1996;40(11):2592–2597.
  • Bot C, Hall BS, Bashir N, et al. Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob Agents Chemother. 2010;54(10):4246–4252. doi:10.1128/AAC.00800-10.
  • Canavaci AMC, Bustamante JM, Padilla AM, et al. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis. 2010;4:e740. doi:10.1371/journal.pntd.0000740.g007.
  • El-Sayed NM, Myler PJ, Bartholomeu DC, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309(5733):409–415. doi:10.1126/science.1112631.
  • Maser P, Wittlin S, Rottmann M, et al. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol. 2012;12(5):562–566. doi:10.1016/j.coph.2012.05.001.
  • Freitas-Junior LH, Chatelain E, Kim HA, et al. Visceral leishmaniasis treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist 2012;2:11–19. doi:10.1016/j.ijpddr.2012.01.003.
  • Burrows JN, Burlot E, Campo B, et al. Antimalarial drug discovery - the path towards eradication. Parasitology. 2014;141(1):128–139. doi:10.1017/S0031182013000826.
  • Don R, Ioset J-R. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology. 2014;141(1):140–146. doi:10.1017/S003118201300142X.
  • Pink R, Hudson A, Mouriès M-A BM. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005;4(9):727–740. doi:10.1038/nrd1824.
  • Payne DJ, Gwynn MN, Holmes DJ, et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2006;6(1):29–40. doi:10.1038/nrd2201.
  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–519. doi:10.1038/nrd3480.
  • Keller TH, Shi P-Y, Wang Q-Y. Anti-infectives: can cellular screening deliver? Curr Opin Chem Biol 2011;15(4):529–533. doi:10.1016/j.cbpa.2011.06.007.
  • Gilbert IH. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J Med Chem. 2013;56(20):7719–7726. doi:10.1021/jm400362b.
  • Vincent F, Loria P, Pregel M, et al. Developing predictive assays: the phenotypic screening “rule of 3”. Sci Transl Med. 2015;7(293):293ps15–293ps15. doi:10.1126/scitranslmed.aab1201.
  • Butera JA. Phenotypic screening as a strategic component of drug discovery programs targeting novel antiparasitic and antimycobacterial agents: an editorial. J Med Chem. 2013;56(20):7715–7718. doi:10.1021/jm400443k.
  • Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010;28(5):237–245. doi:10.1016/j.tibtech.2010.02.005.
  • Nohara LL, Lema C, Bader JO, et al. High-content imaging for automated determination of host-cell infection rate by the intracellular parasite. Trypanosoma Cruzi. Parasitol Int. 2010;59(4):565–570. doi:10.1016/j.parint.2010.07.007.
  • Moon S, Siqueira-Neto JL, Moraes CB, et al. An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite. Trypanosoma Cruzi. Plos ONE. 2014;9(2):e87188. doi:10.1371/journal.pone.0087188.
  • Sykes ML, Avery VM. A luciferase based viability assay for ATP detection in 384-well format for high throughput whole cell screening of Trypanosoma brucei bloodstream form strain 427. Parasit Vectors. 2009;2(1):54. doi:10.1186/1756-3305-2-54.
  • Alonso-Padilla J, Cotillo I, Presa JL, et al. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl Trop Dis. 2015;9(1):e0003493. doi:10.1371/journal.pntd.0003493.
  • Neitz RJ, Chen S, Supek F, et al. Lead identification to clinical candidate selection: drugs for Chagas disease. J Biomol Screen. 2015;20(1):101–111. doi:10.1177/1087057114553103.
  • Bettiol E, Samanovic M, Murkin AS, et al. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis. 2009;3(2):e384. doi:10.1371/journal.pntd.0000384.t001.
  • Pena I, Pilar Manzano M, Cantizani J, et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep. 2015;5:8771. doi:10.1038/srep08771.
  • Keenan M, Alexander PW, Chaplin JH, et al. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi. Future Med Chem. 2013;5(15):1733–1752. doi:10.4155/fmc.13.139.
  • Urbina JA, Lira R, Visbal G, et al. In vitro antiproliferative effects and mechanism of action of the new triazole derivative UR-9825 against the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother. 2000;44(9):2498–2502.
  • Moraes CB, Giardini MA, Kim H, et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci Rep. 2014;4:4703. doi:10.1038/srep04703.
  • Cherkesova TS, Hargrove TY, Vanrell MC, et al. Sequence variation in CYP51A from the Y strain of Trypanosoma cruzi alters its sensitivity to inhibition. FEBS Letters. 2014;588(21):3878–3885. doi:10.1016/j.febslet.2014.08.030.
  • Urbina JA, Payares G, Contreras LM, et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1998;42(7):1771–1777.
  • Urbina JA, Payares G, Sanoja C, et al. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int J Antimicrob Agents. 2003;21(1):27–38.
  • Olivieri BP, Molina JT, de Castro SL, et al. A comparative study of posaconazole and benznidazole in the prevention of heart damage and promotion of trypanocidal immune response in a murine model of Chagas disease. Int J Antimicrob Agents. 2010;36(1):79–83. doi:10.1016/j.ijantimicag.2010.03.006.
  • Francisco AF, Lewis MD, Jayawardhana S, et al. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother. 2015;59(8):4653–4661. doi:10.1128/AAC.00520-15.
  • Khare S, Liu X, Stinson M, et al. Antitrypanosomal treatment with benznidazole is superior to posaconazole regimens in mouse models of Chagas disease. Antimicrob Agents Chemother. 2015;59(10):6385–6394. doi:10.1128/AAC.00689-15.
  • Chatelain E. Chagas disease drug discovery: toward a new era. J Biomol Screen. 2015;20(1):22–35. doi:10.1177/1087057114550585.
  • Brener Z, Chiari E. Variações morfológicas observadas em diferentes amostras de Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo. 1963;5:220–244.
  • Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Society Trop Med Hyg. 1987;81(5):755–759. DOI:10.1016/0035-9203(87)90020-4.
  • Neal RA, Van Bueren J. Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro. Trans R Society Trop Med Hyg. 1988;82(5):709–714. doi:10.1016/0035-9203(88)90208-8.
  • Camandaroba ELP, Reis EAG, Gonçalves MS, et al. Trypanosoma cruzi: susceptibility to chemotherapy with benznidazole of clones isolated from the highly resistant Colombian strain. Rev Soc Bras Med Trop. 2003;36(2):201–209.
  • Chen YT, Brinen LS, Kerr ID, et al. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl Trop Dis. 2010;4(9):e825. doi:10.1371/journal.pntd.0000825.
  • Sykes ML, Avery VM. Approaches to protozoan drug discovery: phenotypic screening. J Med Chem. 2013;56(20):7727–7740. doi:10.1021/jm4004279.
  • Viotti R, Alarcon de Noya B, Araujo-Jorge T, et al. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother. 2014;58(2):635–639. doi:10.1128/AAC.01662-13.
  • Terstappen GC, Schlüpen C, Raggiaschi R, et al. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov. 2007;6(11):891–903. doi:10.1038/nrd2410.
  • Khare S, Roach SL, Barnes SW, et al. Utilizing chemical genomics to identify cytochrome b as a novel drug target for Chagas disease. PLoS Pathog. 2015;11(7):e1005058. doi:10.1371/journal.ppat.1005058.
  • Puri AW, Bogyo M. Using small molecules to dissect mechanisms of microbial pathogenesis. ACS Chem Biol. 2009;4(8):603–616. doi:10.1021/cb9001409.
  • Wierzba K, Muroi M, Osada H. Proteomics accelerating the identification of the target molecule of bioactive small molecules. Curr Opin Chem Biol. 2011;15(1):57–65. doi:10.1016/j.cbpa.2010.10.009.
  • Katiyar S, Kufareva I, Behera R, et al. Lapatinib-binding protein kinases in the African trypanosome: identification of cellular targets for kinase-directed chemical scaffolds. PLoS ONE. 2013;8(2):e56150. doi:10.1371/journal.pone.0056150.
  • Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). PNAS. 2009;106(51):21984–21989. doi:10.1073/pnas.0910040106.
  • Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol. 2013;17(1):118–126. doi:10.1016/j.cbpa.2012.12.022.
  • Hall CI, Reese ML, Weerapana E, et al. Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc Natl Acad Sci USA. 2011;108(26):10568–10573. doi:10.1073/pnas.1105622108.
  • Kato N, Sakata T, Breton G, et al. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol. 2008;4(6):347–356. doi:10.1038/nchembio.87.
  • Alsford S, Eckert S, Baker N, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482(7384):232–236. doi:10.1038/nature10771.
  • Jones NG, Thomas EB, Brown E, et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog. 2014;10(1):e1003886. doi:10.1371/journal.ppat.1003886.
  • Genovesio A, Giardini MA, Kwon Y-J, et al. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection. PLoS ONE. 2011;6(5):e19733. doi:10.1371/journal.pone.0019733.t001.
  • Caradonna KL, Engel JC, Jacobi D, et al. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe. 2013;13(1):108–117. doi:10.1016/j.chom.2012.11.011.
  • Choi J, El-Sayed NM. Functional genomics of trypanosomatids. Parasite Immunol. 2012;34(2–3):72–79. doi:10.1111/j.1365-3024.2011.01347.x.
  • Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C, et al. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. PLoS Negl Trop Dis. 2011;5(8):e1297. doi:10.1371/journal.pntd.0001297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.