547
Views
38
CrossRef citations to date
0
Altmetric
Review

Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery

, &
Pages 473-488 | Received 05 Dec 2015, Accepted 29 Feb 2016, Published online: 21 Mar 2016

References

  • Hansch C, Fujita T. ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc. 1964;86:1616–1626. doi:10.1021/ja01062a035.
  • Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71:525–616. doi:10.1021/cr60274a001.
  • Giaginis C, Tsantili-Kakoulidou A. Alternative measures of lipophilicity: from octanol–water partitioning to IAM retention. J Pharm Sci. 2008;97:2984–3004. doi:10.1002/jps.21244.
  • van de Waterbeemd H, Smith DA, Beaumont K, et al. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem. 2001;44:1313–1333.
  • Testa B, Vistoli G, Pedretti A. Musings on ADME predictions and structure -activity relations. Chem Biodiver. 2005;2:1411–1427. doi:10.1002/cbdv.200590115.
  • Leo A, Hoekman D. Calculating log P(oct) with no missing fragments; the problem of estimating new interaction parameters. Perspect Drug Discov Design. 2000;18:19–38. doi:10.1023/A:1008739110753.
  • Mannhold R. Calculation of lipophilicity: a classification of methods. In: Testa B, Kramer SD, Wunderli-Allenspach H, et al., editors. Pharmacokinetic profiling in drug research. Zurich: Wiley, VCH; 2006. p. 333–352.
  • Mannhold R, Poda GI, Ostermann C, et al. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci. 2009;98:861–893. doi:10.1002/jps.21494.
  • Martel S, Gillerat F, Carosati E, et al. Large, chemically diverse dataset of logP measurements for benchmarking studies. Eur J Pharm Sci. 2013;48:21–29. doi:10.1016/j.ejps.2012.10.019.
  • Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A. 2004;1037:1043–1055.
  • Slawik T, Paw B. Lipophilicity of some N-and O-substituted alkanoic acids of 1,2-benzisothiazol-3(2H)-one determined by reversed phase thin layer chromatography. J Liq Chromatogr Rel Technol. 2004;27:1043–1055. doi:10.1081/JLC-120030177.
  • Lombardo F, Shalaeva MY, Tupper KA, et al. Elog Doct: a tool for lipophilicity determination in drug discovery. 2. basic and neutral compounds. J Med Chem. 2001;44:2490–2497. doi:10.1021/jm0100990.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Contribution to the standardization of the chromatographic conditions for the lipophilicity assessment of neutral and basic drugs. Anal Chim Acta. 2006;573:311–318. doi:10.1016/j.aca.2006.03.074.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Octanol/water partitioning simulation by reversed phase HPLC for structurally diverse acidic drugs: effect of octanol as mobile phase additive. J Chromatogr A. 2007;1166:116–125. doi:10.1016/j.chroma.2007.08.004.
  • Giaginis C, Tsantili-Kakoulidou A. The current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J Liq Chromatogr. 2008;31:79–96. doi:10.1080/10826070701665626.
  • Franks NP, Abraham MH, Lieb WR. Molecular organization of liquid n-octanol: an X-ray diffraction analysis. J Pharm Sci. 1993;82:466–470. doi:10.1002/jps.2600820507.
  • Iwahashi M, Hayashi Y, Hachiya N, et al. Self-association of octan-1-ol in the pure liquid state and in decane solutions as observed by viscosity, self diffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements. J Chem Soc Faraday Trans. 1993;89:707–712. doi:10.1039/ft9938900707.
  • Conradi R, Burton PS, Borschardt RT. Physico-chemical and biological factors that influence a drug’s cellular permeability by passive diffusion. In: Pliska V, Testa B, van de Waterbeemd H, editors. Lipophilicity in drug action and toxicology. Weinheim: VCH Publishers; 1996. p. 233–252.
  • Mason RP, Rhodes DG, Herbette LG. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J Med Chem. 1991;34:870–877. doi:10.1021/jm00107a001.
  • Barbato F. The use of Immobilized Artificial Membrane (IAM) chromatography for determination of lipophilicity. Curr Comput Aided Drug Des. 2006;2:341–352. doi:10.2174/157340906778992319.
  • Krämer S. Liposomes/water partitioning: theory techniques and applications. In: Testa B, van de Waterbeemd H, Folkers G, et al., editors. Pharmacokinetic optimization in drug research.Zürich: Verlag Helvetica Chimica Acta and Weinheim: Wiley-VCH; 2001.
  • Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res. 1997;14:763–766.
  • Usansky HH, Sinko PJ. Estimating human drug oral absorption kinetics from caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for ka and Fa. J Pharm Exp Ther. 2005;314:391–399. doi:10.1124/jpet.104.076182.
  • Thiel-Demby VE, Humphreys JE, St John Williams LA, et al. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharm. 2009;6:11–18. doi:10.1021/mp800122b.
  • Volpe DA. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci. 2008;97:712–725. doi:10.1002/jps.21010.
  • Pidgeon C, Venkataram UV. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal Biochem. 1989;176:36–47.
  • Pidgeon C, Ong S, Liu H, et al. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J Med Chem. 1995;38:590–594.
  • Ong S, Liu H, Pidgeon C. Immobilized artificial membrane chromatography: measurements of membrane partition coefficient and predicting drug permeability. J Chromatogr A. 1996;728:113–128.
  • Mueller P, Rudin DO, Tien HT, et al. Reconstitution of excitable cell membrane structure in vitro. Circulation. 1962;26:1167–1171. doi:10.1161/01.CIR.26.5.1167.
  • Ries RS, Choi H, Blunck R, et al. Black lipid membranes: visualizing the structure, dynamics, and substrate dependence of membranes. J Phys Chem B. 2004;108:16040–16049. doi:10.1021/jp048098h.
  • Chan YHM, Boxer SG. Model membrane systems and their applications. Curr Opin Chem Biol. 2007;11:1–7. doi:10.1016/j.cbpa.2007.09.020.
  • Pignatello R, Musumeci T, Basile L, et al. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J Pharm Bioallied Sci. 2011;3:4–14. doi:10.4103/0975-7406.76461.
  • Khan MS, Dosoky NS, Williams JD. Engineering lipid bilayer membranes for protein studies. Int J Mol Sci. 2013;14:21561–21597. doi:10.3390/ijms141121561.
  • Besenicar M, Macek P, Lakey JH, et al. Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipids. 2006;141:169–178. doi:10.1016/j.chemphyslip.2006.02.010.
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–1010. doi:10.1021/jm970530e.
  • Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49:3948–3954. doi:10.1021/jm0600592.
  • Pidgeon C, Marcus C, Alvarez F. Immobilized artificial membrane chromatography: surface chemistry and applications. In: Kelly JW, Baldwin TO, editors. Applications of enzyme biotechnology. New York (NY): Springer Science & Business Media; 2013. p. 201–220.
  • Moaddel R, Wainer IW. The preparation and development of cellular membrane affinity chromatography columns. Nat Protocol. 2009;4:197–205. doi:10.1038/nprot.2008.225.
  • Habicht KL, Singh NS, Khadeer MA, et al. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns. J Chromatogr A. 2014;1339:80–85. doi:10.1016/j.chroma.2014.02.076.
  • Liu Y, Li L, Dai R, et al. Assessment of the enzymatic activity and inhibition using HPFA with a microreactor, trypsin, absorbed on immobilized artificial membrane. J Chromatogr Sci. 2010;48:150–155.
  • Taillardat-Bertschinger A, Carrupt PA, Barbato F, et al. Immobilized artificial membrane HPLC in drug research. J Med Chem. 2003;46:655–665. doi:10.1021/jm020265j.
  • Markovich RJ, Stevens JM, Pidgeon C. Fourier transform infrared assay of membrane lipids immobilized to silica: leaching and stability of immobilized artificial membrane-bonded phases. Anal Biochem. 1989;182:237–244.
  • Markovich RJ, Qiu X, Nichols DE, et al. Silica subsurface amine effect on the chemical stability and chromatographic properties of end-capped immobilized artificial membrane surfaces. Anal Chem. 1991;63:1851–1860.
  • Rhee D, Markovich R, Chae WG, et al. Chromatographic surfaces prepared from lyso phosphatidylcholine ligands. Anal Chim Acta. 1994;297:377–386. doi:10.1016/0003-2670(94)00260-6.
  • Caldwell GW, Masucci JA, Evangelisto M, et al. Evaluation of the immobilized artificial membrane phosphatidylcholine. Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions. J Chromatogr A. 1998;800:161–169.
  • Taillardat-Bertschinger A, Barbato F, Quercia MT, et al. Structural properties governing retention mechanisms on immobilized artificial membrane (IAM) HPLC columns. Helv Chim Acta. 2002;85:519–532. doi:10.1002/1522-2675(200202)85:2<519::AID-HLCA519>3.0.CO;2-Q.
  • Tsopelas F, Tsantili-Kakoulidou A, Ochsenkühn-Petropoulou M. Biomimetic chromatographic analysis of selenium species: application for the estimation of their pharmacokinetic properties. Anal Bioanal Chem. 2010;397:2171–2180. doi:10.1007/s00216-010-3624-9.
  • Tsopelas F, Malaki N, Vallianatou T, et al. Insight into the retention mechanism on immobilized artificial membrane chromatography using two stationary phases. J Chromatogr A. 2015;1396:25–33. doi:10.1016/j.chroma.2015.03.060.
  • Barbato F, Di Martino G, Grunetto G, et al. Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases. Eur J Pharm Sci. 2004;22:261–269. doi:10.1016/j.ejps.2004.03.019.
  • Seydel JK, Wiese M. Drug Membrane Interactions. In: Mannhold R, Kubinyi H, Folkers G, editors. Methods and principles in medicinal chemistry. Vol. 15. Weinheim: Wiley-VCH; 2002. p. 157–159.
  • Seelig J, Macdonald PM, Scherer PG. Phospholipid head groups as sensors of electrical charge in membranes. Biochem. 1987;26:7535–7541. doi:10.1021/bi00398a001.
  • Taillardat-Bertschinger A, Galland A, Carrupt PA, et al. Immobilized artificial membrane liquid chromatography: proposed guidelines for technical optimization of retention measurements. J Chromatogr A. 2002;953:39–53. doi:10.1016/S0021-9673(02)00119-X.
  • Amato M, Barbato F, Morrica P, et al. Interactions between amines and phospholipids: A chromatographic study on immobilized artificial membrane (IAM) stationary phases at various pH values. Helv Chim Acta. 2000;83:2836–2847. doi:10.1002/1522-2675(20001004)83:10<2836::AID-HLCA2836>3.0.CO;2-G.
  • Regis Technologies, INC. 8210 Austin Avenue, IL 60053, USA. 2014 [cited 2015 Nov 30]. Available from: http://www.registech.com
  • Pidgeon C, Ong S, Chol H, et al. Preparation of mixed ligand immobilized artificial membranes for predicting drug binding to membranes. Anal Chem. 1994;66:2701–2709.
  • De Vrieze M, Verzele D, Szucs R, et al. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier. Anal Bioanal Chem. 2014;406:6179–6188. doi:10.1007/s00216-014-8054-7.
  • Krause E, Dathe M, Wieprecht T, et al. Noncovalent immobilized artificial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions. J Chromatogr A. 1999;849:125–133.
  • Jiang Z, Reilly J, Everatt B. Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography. J Chromatogr A. 2009;1216:2439–2448. doi:10.1016/j.chroma.2009.01.028.
  • Zhao X, Chen W, Liu Z, et al. A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk. J Chromatogr A. 2014;1367:99–108. doi:10.1016/j.chroma.2014.09.048.
  • Zhao X, Chen W, Zhou Z, et al. Preparation of a biomimetic polyphosphorylcholine monolithic column for immobilized artificial membrane chromatography. J Chromatogr A. 2015;1407:176–183. doi:10.1016/j.chroma.2015.06.056.
  • Bocian S, Nowaczyk A, Buszewski B. New alkyl-phosphate bonded stationary phases for liquid chromatographic separation of biologically active compounds. Anal Bioanal Chem. 2012;404:731–740. doi:10.1007/s00216-012-6134-0.
  • He LC, Wang SC, Yang GD, et al. Progress in cell membrane chromatography. Drug Discov Ther. 2007;1:104–107.
  • Guo Y, Han S, Cao J, et al. Histamine H1 receptor cell membrane chromatography online high-performance liquid chromatography with mass spectrometry method reveals houttuyfonate as an activator of the histamine H1 receptor. J Sep Sci. 2014;37:3188–3194. doi:10.1002/jssc.201400678.
  • He LC, Wang SC, Geng XD. Coating and fusing cell membranes onto a silica surface and their chromatographic characteristics. Chromatographia. 2001;54:71–76. doi:10.1007/BF02491836.
  • Jia D, Chen X, Cao Y, et al. On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: A strategy for rapid screening active compounds in vivo. J Pharm Biomed Anal. 2016;118:27–33. doi:10.1016/j.jpba.2015.10.013.
  • Wang D, Lv D, Chen X, et al. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system. J Sep Sci. 2016;38:4159–4165. doi:10.1002/jssc.201500857.
  • Han S, Li C, Huang J, et al. Cell membrane chromatography coupled with UHPLC-ESI-MS/MS method to screen target components from Peucedanum praeruptorum Dunn acting on α1A adrenergic receptor. J Chromatogr B. 2016;1011:158–162. doi:10.1016/j.jchromb.2016.01.001.
  • Lasic DD. Liposomes: from physics to applications. Amsterdam: Elsevier; 1993.
  • Cevc G, editor. Phospholipid handbook. New York (NY): Dekker; 1993.
  • Sheng Q, Schulten K, Pidgeon C. Molecular dynamic simulation of immobilized artificial membranes. J Phys Chem. 1995;99:11018–11027. doi:10.1021/j100027a050.
  • Kansy M, Fischer H, Bendels B, et al. Physicochemical methods for estimating permeability and related properties. In: Borchardt R, Kerns EH, Lipinski CH, et al., editors. Pharmaceutical profiling in drug discovery for lead selection. Arlington (VA): AAPS Press; 2004.
  • Tsopelas F, Ochsenkühn-Petropoulou M, Tsantili-Kakoulidou A. Void volume markers in reversed-phase and biomimetic liquid chromatography. J Chromatogr A. 2010;1217:2847–2854. doi:10.1016/j.chroma.2010.02.062.
  • Barbato F, Cirocco V, Grumetto L, et al. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents. Eur J Pharm Sci. 2007;31:288–297. doi:10.1016/j.ejps.2007.04.003.
  • Valko K, Nunhuck S, Bevan C, et al. Fast gradient HPLC method to determine compounds binding to human serum albumin. relationships with octanol-water and immobilized artificial membrane lipophilicity. J Pharm Sci. 2003;92:2236–2248. doi:10.1002/jps.10494.
  • Marcus Y, Migron Y. Polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane. J Phys Chem. 1991;95:400–406. doi:10.1021/j100154a070.
  • Vrakas D, Hadjipavlou-Litina D, Tsantili-Kakoulidou A. Retention of substituted coumarins using Immobilized Artificial Membrane (IAM) Chromatography: a comparative study with n-Octanol Partitioning and Reversed-Phase HPLC and TLC. J Pharm Biomed Anal. 2005;39:908–913. doi:10.1016/j.jpba.2005.05.026.
  • Morse K, Pidgeon C. Importance of mobile phase in immobilized artificial membrane chromatography. In: Testa B, van de Waterbeemd H, Folkers G, et al., editors. Pharmacokinetic optimization in drug research. Weinheim: Verlag Helvetica Chimica Acta and Zürich: Wiley-VCH; 2001. p. 351–381.
  • Hanna M, De Biasi V, Bond B, et al. Biomembrane lipids as components of chromatographic phases: comparative chromatography on coated and bonded phases. Chromatographia. 2000;52:710–720. doi:10.1007/BF02490994.
  • Ledbetter MR, Gutsell S, Hodges G, et al. Database of published retention factors for immobilized artificial membrane HPLC and an assessment of the effect of experimental variability. Environ Toxicol Chem. 2011;30:2701–2708. doi:10.1002/etc.677.
  • Valkó K, Bevan C, Reynolds D. Chromatographic hydrophobicity index for fast-gradient RP-HPLC: A high-throughput alternative to logP/logD. Anal Chem. 1997;69:2022–2029. doi:10.1021/ac961242d.
  • Valko K, Du CM, Bevan CD, et al. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J Pharm Sci. 2000;89:1085–1096.
  • Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A. 2004;1037:299–310.
  • van de Waterbeemd H, El Tayar N, Carrupt PA, et al. Pattern recognition study of QSAR substituent descriptors. J Comput Aided Mol Des. 1989;3:111–132.
  • Testa B, Carrupt PA, Gaillard P, et al. Intramolecular interactions encoded in lipophilicity: their nature and significance. In: Pliska V, Testa B, van de Waterbeemd H, editors. Lipophilicity in drug action and toxicology. Weinheim: VCH; 1996. p. 49–71.
  • El Tayar N, Testa B, Carrupt PA. Polar intermolecular interactions encoded in partition coefficients: an indirect estimation of hydrogen-bond parameters of polyfunctional solutes. J Phys Chem. 1992;96:1455–1459. doi:10.1021/j100182a078.
  • Raevsky OA, Schaper KJ, Seydel JK. H-Bond contribution to octanol-water partition coefficients of polar compounds. Quant Struct-Act Relat. 1995;14:433–436. doi:10.1002/qsar.19950140504.
  • Tsantili-Kakoulidou A, Varvaresou A, Siatra-Papastaikoudi TH, et al. A comprehensive investigation of the partitioning and hydrogen bonding behavior of Indole containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole by means of experimental and calculative approaches. Quant Struct-Act Relat. 1999;18:482–489. doi:10.1002/(SICI)1521-3838(199911)18:5<482::AID-QSAR482>3.0.CO;2-R.
  • Vallat P, Gaillard P, Carrupt PA, et al. Structure-lipophilicity and structure-polarity relationships of amino-acids and peptides. Helv Chim Acta. 1995;78:471–485. doi:10.1002/hlca.19950780218.
  • Van Balen GP, Martinet CAM, Caron G, et al. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev. 2004;24:299–324. doi:10.1002/med.10063.
  • Ong S, Pidgeon C. Thermodynamics of solute partitioning into immobilized artificial membranes. Anal Chem. 1995;67:2119–2128.
  • Ottiger C, Wunderli-Allenspach H. Immobilized artificial membrane (IAM)-HPLC for partition studies of neutral and ionized acids and bases in comparison with the liposomal partition system. Pharm Res. 1999;16:643–650. doi:10.1023/A:1018808104653.
  • Haroun M, Dufresne C, Jourdan E, et al. Salt effects on the interaction of an amphiphilic model molecule with immobilized phosphatidylcholine monolayers. J Chromatogr A. 2002;977:185–192.
  • Hernando V, Rieutord A, Pansu R, et al. Immobilised artificial membrane chromatography coupled with molecular probing. Mimetic system for studying lipid-calcium interactions in nutritional mixtures. J Chromatogr A. 2005;1064:75–84.
  • Vrakas D, Giaginis C, Tsantili-Kakoulidou A. Different retention behavior of structurally diverse basic and neutral drugs in immobilized artificial membrane and reversed-phase high performance liquid chromatography: comparison with octanol-water partitioning. J Chromatogr A. 2006;1116:158–164. doi:10.1016/j.chroma.2006.03.058.
  • Vrakas D, Giaginis C, Tsantili-Kakoulidou A. Electrostatic interactions and ionization effect in immobilized artificial membrane retention. A comparative study with octanol-water partitioning. J Chromatogr A. 2008;1187:67–78. doi:10.1016/j.chroma.2008.01.079.
  • Fatemi MH, Shamseddin H. QSRR prediction of immobilized artificial membrane retention factors of some drugs. J Chem Biochem. 2013;1:15–24.
  • Li J, Sun J, He Z. Quantitative structure–retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression. J Chromatogr A. 2007;1140:174–179. doi:10.1016/j.chroma.2006.11.091.
  • Barbato F, La Rotonda MI, Quaglia F. Chromatographic indices determined on an immobilized artificial membrane (IAM) column as descriptors of lipophilic and polar interactions of 4-phenyldihydropyridine calcium-channel blockers with biomembranes. Eur J Med Chem. 1996;31:311–318. doi:10.1016/0223-5234(96)80368-0.
  • Barbato F, Di Martino G, Grumetto L, et al. Can protonated beta-blockers interact with biomembranes stronger than neutral isolipophilic compounds? A chromatographic study on three different phospholipid stationary phases (IAM-HPLC). Eur J Pharm Sci. 2005;25:379–386. doi:10.1016/j.ejps.2005.03.011.
  • Barbato F, La Rotonda MI, Quaglia F. Interactions of nonsteroidal antiinflammatory drugs with phospholipids: comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. J Pharm Sci. 1997;86:225–229. doi:10.1021/js960233h.
  • Grumetto L, Carpentiero C, Barbato F. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data. Eur J Pharm Sci. 2012;45:685–692. doi:10.1016/j.ejps.2012.01.008.
  • Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. The potential of immobilized artificial membrane chromatography to predict human oral absorption. Eur J Pharm Sci. 2016;81:82–93. doi:10.1016/j.ejps.2015.09.020.
  • Taillardat-Bertschinger A, Marca-Martinet CA, Carrupt PA, et al. Molecular factors influencing retention on immobilized artifical membranes (IAM) compared to partitioning in liposomes and n-octanol. Pharm Res. 2002;19:729–737.
  • Liu X, Hefesha H, Scriba G, et al. Retention behavior of neutral and positively and negatively charged solutes on an immobilized-artificial-membrane (IAM) stationary phase. Helv Chim Acta. 2008;91:1505–1512. doi:10.1002/hlca.200890164.
  • Liu X, Fan P, Chen M, et al. Drug-membrane interaction on immobilized liposome chromatography compared to immobilized artificial membrane (IAM), liposome/water, and octan-1-ol/water systems. Helv Chim Acta. 2010;93:203–211. doi:10.1002/hlca.200900233.
  • Avdeef A, Box KJ, Comer JE, et al. pH-Metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm Res. 1998;15:209–215.
  • Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1:277–351.
  • Avdeef A. Absorption and drug development: solubility, permeability, and charge state. Hoboken (NJ): John Wiley & Sons; 2012.
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Investigation of the lipophilic behaviour of some Thiazolidinediones. Relationships with PPARγ activity. J Chromatogr B. 2007;857:181–187. doi:10.1016/j.jchromb.2007.07.013.
  • Lázaro E, Ràfols C, Abraham MH, et al. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. J Med Chem. 2006;49:4861–4870. doi:10.1021/jm0602108.
  • El Tayar N, Tsantili-Kakoulidou A, Roethlisberger T, et al. Different partitioning behaviour of sulfonyl-containing compounds in reversed-phase high-performance liquid chromatography and octanol-water systems. J Chromatogr. 1988;439:237–244. doi:10.1016/S0021-9673(01)83837-1.
  • Lázaro E, Ràfols C, Rosés M. Characterization of the acidity of residual silanol groups in immobilized artificial membranes. J Chromatogr A. 2008;1182:233–236. doi:10.1016/j.chroma.2008.01.003.
  • Abraham MH, Chadha HS, Leo A. Hydrogen bonding XXXV. Relationship between high-performance liquid chromatography capacity factors and water-octanol partition coefficients. J Chromatogr A. 1994;685:203–211. doi:10.1016/0021-9673(94)00686-5.
  • Abraham MH, Ibrahim A, Zissimos AM, et al. Application of hydrogen bonding calculatons in property based drug design. Drug Discov Today. 2002;7:1056–1063.
  • Zissimos AM, Abraham MH, Du CM, et al. Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation. J Chem Soc. 2001;2:2001–2010.
  • Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A. 2006;1126:143–194. doi:10.1016/j.chroma.2006.06.074.
  • Abraham MH, McGowan JC. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia. 1987;23:243–246. doi:10.1007/BF02311772.
  • Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A. 2004;1037:29–47.
  • Abraham MH, Chadha HS, Whiting GS, et al. Hydrogen bonding. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of Seiler. J Pharm Sci. 1994;83:1085–1100.
  • Benhaim D, Grushka E. Characterization of Ascentis RP-Amide column: lipophilicity measurement and linear solvation energy relationships. J Chromatogr A. 2010;1217:65–74. doi:10.1016/j.chroma.2009.11.013.
  • Abraham MH, Chandha HS, Leitao RAE, et al. Determination of solute lipophilicity, as log P(octanol) and log P(alkane) using poly(styrene-divinylbenzene) and immobilised artificial membrane stationary phases in reversed-phase high-performance liquid chromatography. J Chromatogr A. 1997;766:35–47. doi:10.1016/S0021-9673(96)00977-6.
  • Li J, Suna J, Cui S, et al. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor. J Chromatogr A. 2006;1132:174–182. doi:10.1016/j.chroma.2006.07.073.
  • Sprunger L, Blake-Taylor BH, Wairegi A, et al. Characterization of the retention behavior of organic and pharmaceutical drug molecules on an immobilized artificial membrane column with the Abraham model. J Chromatogr A. 2007;1160:235–245. doi:10.1016/j.chroma.2007.05.051.
  • Osterberg T, Svensson M, Lundahl P. Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. Eur J Pharm Sci. 2001;12:427–439.
  • Stewart BH, Chung FY, Tait B, et al. Hydrophobicity of HIV protease inhibitors by immobilized artificial membrane chromatography: application and significance to drug transport. Pharm Res. 1998;15:1401–1406.
  • Chan ECY, Tan WL, Ho PC, et al. Modelling Caco-2 permeability of drugs using immobilized artificial membrane chromatographic and physicochemical descriptors. J Chromatogr A. 2005;1072:159–168.
  • Balimane PV, Chong S, Morrison RA. Current methodologies for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44:301–312.
  • Yoon CH, Shin BS, Chang HS, et al. Rapid screening of drug absorption potential using the immobilized artificial membrane phosphatidylcholine column and molar volume. Chromatographia. 2004;60:399–404. doi:10.1365/s10337-004-0410-x.
  • Shin BS, Yoon CH, Balthasar JP, et al. Prediction of drug bioavailability in humans using immobilized artificial membrane phosphatidylcholine column chromatography and in vitro hepatic metabolic clearance. Biomed Chromatogr. 2009;23:764–769. doi:10.1002/bmc.1182.
  • Yen TE, Agatonovic-Kustrin S, Evans AM, et al. Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors. J Pharm Biomed Anal. 2005;38:472–478. doi:10.1016/j.jpba.2005.01.040.
  • Kotecha J, Shah S, Rathod I, et al. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs. Int J Pharm. 2007;333:127–135. doi:10.1016/j.ijpharm.2006.10.010.
  • Kotecha J, Shah S, Rathod I, et al. Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors. Int J Pharm. 2008;360:96–106. doi:10.1016/j.ijpharm.2008.04.025.
  • Salminen T, Pulli A, Taskinen J. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J Pharm Biomed Anal. 1997;15:469–477.
  • De Vrieze M, Lynen F, Chen K, et al. Predicting drug penetration across the blood–brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography. Anal Bioanal Chem. 2013;405:6029–6041. doi:10.1007/s00216-013-7015-x.
  • De Vrieze M, Verzele D, Szucs R, et al. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier. Anal Bioanal Chem. 2014;406:6179–6188. doi:10.1007/s00216-014-8054-7.
  • Grumetto L, Carpentiero C, Di Vaio P, et al. Lipophilic and polar interaction forces between acidic drugs and membrane phospholipids encoded in IAM-HPLC indexes: their role in membrane partition and relationships with BBB permeation data. J Pharm Biomed Anal. 2013;75:165–72. doi:10.1016/j.jpba.2012.11.034.
  • Grumetto L, Russo G, Barbato F. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM–HPLC: their relationships with data of blood–brain barrier passage. Eur J Pharm Sci. 2014;65:139–146. doi:10.1016/j.ejps.2014.09.015.
  • Reichel A, Begley DJ. Potential of immobilized artificial membranes for predicting drug penetration across the blood-brain barrier. Pharm Res. 1998;15:1270–1274.
  • Péhourcq F, Matoga M, Bannwarth B. Diffusion of arylpropionate non-steroidal anti-inflammatory drugs into the cerebrospinal fluid: a quantitative structure-activity relationship approach. Fundam Clin Pharmacol. 2004;18:65–70.
  • Yoon CH, Kim SJ, Shin BS, et al. Rapid screening of blood-brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J Biomol Screen. 2006;11:13–20. doi:10.1177/1087057105281656.
  • Ducarme A, Neuwels M, Goldstein S, et al. IAM retention and blood brain barrier penetration. Eur J Med Chem. 1998;33:215–223. doi:10.1016/S0223-5234(98)80011-1.
  • Kepczynska E, Bojarski J, Haber P, et al. Retention of barbituric acid derivatives on immobilized artificial membrane stationary phase and its correlation with biological activity. Biomed Chromatogr. 2000;14:256–260. doi:10.1002/1099-0801(200006)14:4<256::AID-BMC982>3.0.CO;2-M.
  • Nasal A, Sznitowska M, Bucinski A, et al. Hydrophobicity parameter from high-performance liquid chromatography on an immobilized artificial membrane column and its relationship to bioactivity. J Chromatogr A. 1995;692:83–89. doi:10.1016/0021-9673(94)00689-7.
  • Barbato F, Cappello B, Miro A, et al. Chromatographic indexes on immobilized artificial membranes for the prediction of transdermal transport of drugs. Farmaco. 1998;53:655–661.
  • Kaliszan R, Nasal A, Bucinski A. Chromatographic hydrophobicity parameter determined on an immobilized artificial membrane column: relationships to standard measures of hydrophobicity and bioactivity. Eur J Med Chem. 1994;29:163–170. doi:10.1016/0223-5234(94)90214-3.
  • Reta M, Giacomelli L, Santo M, et al. Determination of lipophilic descriptors of antihelmintic 6,7-diaryl-pteridine derivatives useful for bioactivity predictions. Biomed Chromatogr. 2003;17:365–372. doi:10.1002/bmc.227.
  • Wilkinson GR. Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination. In: Hardman JG, Limbird LE, Gillman A, editors. Goodman & Gillman’s the pharmacological bases of therapeutics. 10th ed. New York (NY): McGraw-Hill; 2001. p. 20–22.
  • Hollósy F, Valkó K, Hersey A, et al. Estimation of volume of distribution in humans from high throughput HPLC-Based measurements of human serum albumin binding and immobilized artificial membrane partitioning. J Med Chem. 2006;49:6958–6971. doi:10.1021/jm050957i.
  • Valkó K, Nunhuck SB, Hill AP. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements. J Pharm Sci. 2011;100:849–862. doi:10.1002/jps.22323.
  • Valko K, Nunhuck SB, Hill AP. Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements. J Pharm Sci. 2011;100:849–862. doi:10.1002/jps.22323.
  • Hanumegowda UM, Wenke G, Regueiro-Ren A, et al. Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds. Chem Res Toxicol. 2010;23:749–755. doi:10.1021/tx9003825.
  • Casartelli A, Bonato M, Cristofori P, et al. A cell-based approach for the early assessment of the phospholipidogenic potential in pharmaceutical research and drug development. Cell Biol Toxicol. 2003;19:161–176.
  • Alakoskela J-M, Vitovic P, Kinnunen PKJ. Screening for the drug–phospholipid interaction: correlation to phospholipidosis. Chem Med Chem. 2009;4:1224–1251. doi:10.1002/cmdc.200900052.
  • Jiang Z, Reilly J. Chromatography approaches for early screening of the phospholipidosis-inducing potential of pharmaceuticals. J Pharm Biomed Anal. 2012;61:184–190. doi:10.1016/j.jpba.2011.11.033.
  • Wang T, Feng Y, Jin X, et al. Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk. J Pharm Biomed Anal. 2014;96:263–271. doi:10.1016/j.jpba.2014.03.043.
  • Stepanic V, Ziher D, Gabelica-Markovic V, et al. Physicochemical profile of macrolides and their comparison with small molecules. Eur J Med Chem. 2012;47:462–472. doi:10.1016/j.ejmech.2011.11.016.
  • Amsden GW. Advanced-generation macrolides: tissue-directed antibiotics. Int J Antimicrob Agents. 2001;18(Suppl 1):S11–S15.
  • Stepanic V, Koštrun S, Malnar I, et al. Modeling cellular pharmacokinetics of 14-and 15-membered macrolides with physicochemical properties. J Med Chem. 2011;54:719–733. doi:10.1021/jm101317f.
  • Mateus A, Matsson P, Artursson P. Rapid measurement of intracellular unbound drug concentrations. Mol Pharm. 2013;10:2467–2478. doi:10.1021/mp4000822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.