538
Views
36
CrossRef citations to date
0
Altmetric
Review

New developments in flavivirus drug discovery

Pages 433-445 | Received 17 Dec 2015, Accepted 29 Feb 2016, Published online: 21 Mar 2016

References

  • Lindenbach BD, Thiel H-J, Rice CM. Flaviviradae: The viruses and their replication. Philadelphia: Lippincott-Raven Publishers; 2007.
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi:10.1038/nature12060.
  • Dengue and severe dengue. WHO Factscheet No117. May 2015 [cited 2015 Sep 29]; Available from: http://www.who.int/mediacentre/factsheets/fs117/en/
  • Guzman MG, Halstead SB, Artsob H, et al. Dengue: a continuing global threat. Nat Rev Micro. 2010;8(12 Suppl):S7–S16.
  • Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology. 2002;10(2):100–103.
  • Yun S-I, Lee Y-M. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother. 2014;10(2):263–279. doi:10.4161/hv.26902.
  • Verma R, Khanna P, Chawla S. Yellow fever vaccine: An effective vaccine for travelers. Hum Vaccin Immunother. 2014;10(1):126–128. doi:10.4161/hv.26549.
  • Rendi-Wagner P. Advances in vaccination against tick-borne encephalitis. Expert Rev Vaccines. 2008;7(5):589–596. doi:10.1586/14760584.7.5.589.
  • Yellow fever. WHO Factsheet No100. Mar 2014 [cited 2015 Sep 30]; Available from: http://www.who.int/mediacentre/factsheets/fs100/en/
  • Japanese encephalitis. WHO Factsheet No386 2015. Mar 2014 [cited 2015 Sep 30]; Available from: http://www.who.int/mediacentre/factsheets/fs386/en/
  • Heinz FX, Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine. 2012;30(29):4301–4306. doi:10.1016/j.vaccine.2011.09.114.
  • Wahala WMPB, Donaldson EF, de Alwis R, et al. Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS Pathog. 2010;6(3):e1000821. doi:10.1371/journal.ppat.1000975.
  • Guy B, Briand O, Lang J, et al. Development of the Sanofi Pasteur tetravalent dengue vaccine: one more step forward. Vaccine. 2015;33. doi:10.1016/j.vaccine.2015.09.108.
  • Krishnan M, Garcia-Blanco M. Targeting host factors to treat west nile and dengue viral infections. Viruses. 2014;6(2):683. doi:10.3390/v6020683.
  • Pastorino B, Nougairède A, Wurtz N, et al. Role of host cell factors in flavivirus infection: implications for pathogenesis and development of antiviral drugs. Antiviral Res. 2010;87(3):281–94. doi:10.1016/j.antiviral.2010.04.014.
  • Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol. 2015;25(4):205–23. doi:10.1002/rmv.1835.
  • Wang Q-Y, Dong H, Zou B, et al. Discovery of dengue virus NS4B inhibitors. J Virol. 2015. doi:10.1128/JVI.00855-15.
  • Xie X, Zou J, Wang Q-Y, et al. Targeting dengue virus NS4B protein for drug discovery. Antiviral Res. 2015;118:39–45. doi:10.1016/j.antiviral.2015.03.007.
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Micro. 2005;3(1):13–22. doi:10.1038/nrmicro1067.
  • Xie X, Gayen S, Kang C, et al. Membrane topology and function of dengue virus NS2A Protein. J Virol. 2013;87(8):4609–4622. doi:10.1128/JVI.02424-12.
  • Li Y, Kim YM, Zou J, et al. Secondary structure and membrane topology of dengue virus NS4B N-terminal 125 amino acids. Biochim Biophys Acta - Biomembr. 2015;1848(12):3150–3157. doi:10.1016/j.bbamem.2015.09.016.
  • Mackenzie J. Wrapping things up about virus RNA replication. Traffic. 2005;6(11):967–977. doi:10.1111/j.1600-0854.2005.00339.x.
  • Chambers TJ, Weir RC, Grakoui A, et al. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A. 1990;87(22):8898–8902.
  • Bollati M, Alvarez K, Assenberg R, et al. Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res. 2010;87(2):125–148. doi:10.1016/j.antiviral.2009.11.009.
  • Modis Y, Ogata S, Clements D, et al. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A. 2003;100(12):6986–6991. doi:10.1073/pnas.0832193100.
  • Egloff MP, Benarroch D, Selisko B, et al. An RNA cap (nucleoside-2ʹ-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J. 2002;21(11):2757–2768. doi:10.1093/emboj/21.11.2757.
  • Yap TL, Xu T, Chen YL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81(9):4753–4765. doi:10.1128/JVI.02283-06.
  • Erbel P, Schiering N, D’Arcy A, et al. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol. 2006;13(4):372–373. doi:10.1038/nsmb1073.
  • Luo D, Xu T, Hunke C, et al. Crystal structure of the NS3 protease-helicase from dengue virus. J Virol. 2008;82(1):173–183. doi:10.1128/JVI.01788-07.
  • Luo D, Xu T, Watson RP, et al. Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO Journal. 2008;27(23):3209–3219. doi:10.1038/emboj.2008.232.
  • Rodenhuis-Zybert I, Wilschut J, Smit J. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–2786. doi:10.1007/s00018-010-0357-z.
  • can der Schaar HM, Rust MJ, Chen C, et al. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 2008;4(12):e1000244. doi:10.1371/journal.ppat.1000244.
  • Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998;4(11):1302–1307. doi:10.1038/3293.
  • Dueva EV, Osolodkin DI, Kozlovskaya LI, et al. Interaction of flaviviruses with reproduction inhibitors binding in β-OG pocket: insights from molecular dynamics simulations. Mol Inform. 2014;33(10):695–708. doi:10.1002/minf.201300185.
  • Jadav SS, Kaptein S, Timiri A, et al. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg Med Chem Lett. 2015;25(8):1747–1752. doi:10.1016/j.bmcl.2015.02.059.
  • Sedenkova KN, Dueva EV, Averina EB, et al. Synthesis and assessment of 4-aminotetrahydroquinazoline derivatives as tick-borne encephalitis virus reproduction inhibitors. Org Biomol Chem. 2015;13(11):3406–3415. doi:10.1039/C4OB02649G.
  • Ayala-Nuñez NV, Jarupathirun P, Kaptein SJF, et al. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative. Antiviral Res. 2013;100(1):238–45. doi:10.1016/j.antiviral.2013.08.013.
  • De Burghgraeve T, Kaptein SJF, Ayala-Nunez NV, et al. An analogue of the antibiotic teicoplanin prevents flavivirus entry in vitro. PLoS ONE. 2012;7(5):e37244. doi:10.1371/journal.pone.0037244.
  • Brien JD, Austin SK, Sukupolvi-Petty S, et al. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J Virol. 2010;84(20):10630–10643. doi:10.1128/JVI.01190-10.
  • Fibriansah G, Ibarra KD, Ng TS, et al. Dengue Virus. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science. 2015;349(6243):88–91. doi:10.1126/science.aaa8651.
  • Robinson Luke N, Tharakaraman K, Rowley Kirk J, et al. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell. 2015;162(3):493–504. doi:10.1016/j.cell.2015.06.057.
  • de Alwis R, Smith SA, Olivarez NP, et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc Natl Acad Sci U S A. 2012;109(19):7439–7444. doi:10.1073/pnas.1200566109.
  • Chen Y, Maguire T, Hileman RE, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997;3(8):866–871.
  • Ichiyama K, Gopala Reddy SB, Zhang LF, et al. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application. PLoS Negl Trop Dis. 2013;7(4):e2188. doi:10.1371/journal.pntd.0002188.
  • Vervaeke P, Alen M, Noppen S, et al. Sulfated Escherichia coli K5 Polysaccharide derivatives inhibit dengue virus infection of human microvascular endothelial cells by interacting with the viral envelope protein E domain III. PLoS ONE. 2013;8(8):e74035. doi:10.1371/journal.pone.0074035.
  • Pujol CA, Ray S, Ray B, et al. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol. 2012;51(4):412–416. doi:10.1016/j.ijbiomac.2012.05.028.
  • Acosta EG, Piccini LE, Talarico LB, et al. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells. Virus Res. 2014;184:39–43. doi:10.1016/j.virusres.2014.02.011.
  • Hadigal S, Shukla D. Exploiting herpes simplex virus entry for novel therapeutics. Viruses. 2013;5(6):1447–1465. doi:10.3390/v5061447.
  • Fritz R, Stiasny K, Heinz FX. Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol. 2008;183(2):353–361. doi:10.1083/jcb.200806081.
  • Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J. 2005;2:49–49. doi:10.1186/1743-422X-2-49.
  • Lok S-M, Costin JM, Hrobowski YM, et al. Release of dengue virus genome induced by a peptide inhibitor. PLoS ONE. 2012;7(11):e50995. doi:10.1371/journal.pone.0050995.
  • Costin JM, Jenwitheesuk E, Lok S-M, et al. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl Trop Dis. 2010;4(6):e721. doi:10.1371/journal.pntd.0000721.
  • Zu X, Liu Y, Wang S, et al. Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antiviral Res. 2014;104:7–14. doi:10.1016/j.antiviral.2014.01.011.
  • Schmidt AG, Lee K, Yang PL, et al. Small-molecule inhibitors of dengue-virus entry. PLoS Pathog. 2012;8(4):e1002627. doi:10.1371/journal.ppat.1002627.
  • Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 2010;85(1):210–231. doi:10.1016/j.antiviral.2009.07.006.
  • Leung D, Abbenante G, Fairlie DP. Protease Inhibitors: Current status and future prospects. J Med Chem. 2000;43(3):305–341.
  • Wendt A, Adhoute X, Castellani P, et al. Chronic hepatitis C: future treatment. Clin Pharmacol. 2014;6:1–17. doi:10.2147/CPAA.S30338.
  • Falgout B, Pethel M, Zhang YM, et al. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol. 1991;65(5):2467–2475.
  • Gouvea IE, Izidoro MA, Judice WAS, et al. Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: Influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates. Arch Biochem Biophys. 2007;457(2):187–196. doi:10.1016/j.abb.2006.11.005.
  • Li J, Lim SP, Beer D, et al. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem. 2005;280(31):28766–28774. doi:10.1074/jbc.M500588200.
  • Shiryaev Sergey A, Kozlov Igor A, Ratnikov Boris I, et al. Cleavage preference distinguishes the two-component NS2B–NS3 serine proteinases of dengue and West Nile viruses. Biochem J. 2007;401(Pt 3):743–752. doi:10.1042/BJ20061136.
  • Tomlinson SM, Malmstrom RD, Watowich SJ. New approaches to structure-based discovery of dengue protease inhibitors. Infect Disorders Drug Targets. 2009;9(3):17. doi:10.2174/1871526510909030327.
  • Stoermer MJ, Chappell KJ, Liebscher S, et al. Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J Med Chem. 2008;51(18):5714–5721. doi:10.1021/jm800503y.
  • Yin Z, Patel SJ, Wang W-L, et al. Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg Med Chem Lett. 2006;16(1):40–43. doi:10.1016/j.bmcl.2005.09.049.
  • Schüller A, Yin Z, Brian Chia CS, et al. Tripeptide inhibitors of dengue and West Nile virus NS2B–NS3 protease. Antiviral Res. 2011;92(1):96–101. doi:10.1016/j.antiviral.2011.07.002.
  • Nitsche C, Behnam MAM, Steuer C, et al. Retro peptide-hybrids as selective inhibitors of the dengue virus NS2B-NS3 protease. Antiviral Res. 2012;94(1):72–79. doi:10.1016/j.antiviral.2012.02.008.
  • Bastos Lima A, Behnam MAM, El Sherif Y, et al. Dual inhibitors of the dengue and West Nile virus NS2B–NS3 proteases: synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorg Med Chem. 2015;23(17):5748–5755. doi:10.1016/j.bmc.2015.07.012.
  • Behnam MAM, Graf D, Bartenschlager R, et al. Discovery of nanomolar dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J Med Chem. 2015. doi:10.1021/acs.jmedchem.5b01441.
  • Niyomrattanakit P, Yahorava S, Mutule I, et al. Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J. 2006;397(1):203–211. doi:10.1042/BJ20051767.
  • Hammamy MZ, Haase C, Hammami M, et al. Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B–NS3 protease. ChemMedChem. 2013;8(2):231–241. doi:10.1002/cmdc.201200497.
  • Weigel LF, Nitsche C, Graf D, et al. Phenylalanine and phenylglycine analogues as arginine mimetics in dengue protease inhibitors. J Med Chem. 2015;58(19):7719–7733. doi:10.1021/acs.jmedchem.5b00612.
  • Xu S, Li H, Shao X, et al. Critical effect of peptide cyclization on the potency of peptide inhibitors against dengue virus NS2B-NS3 protease. J Med Chem. 2012;55(15):6881–6887. doi:10.1021/jm300655h.
  • Wyles DL. Antiviral resistance and the future landscape of hepatitis C virus infection therapy. J Infect Dis. 2013;207(Suppl 1):S33–9. doi:10.1093/infdis/jis761.
  • Prusis P, Junaid M, Petrovska R, et al. Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B–NS3 proteases. Biochem Biophys Res Commun. 2013;434(4):767–772. doi:10.1016/j.bbrc.2013.03.139.
  • Yildiz M, Ghosh S, Bell JA, et al. Allosteric inhibition of the NS2B-NS3 protease from dengue virus. ACS Chem Biol. 2013;8(12):2744–2752. doi:10.1021/cb400612h.
  • Samanta S, Lim TL, Lam Y. Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 2-{6-[2-(5-Phenyl-4H-{1,2,4]triazol-3-ylsulfanyl)acetylamino]benzothiazol-2-ylsulfanyl}acetamide scaffold. ChemMedChem. 2013;8(6):994–1001. doi:10.1002/cmdc.201300114.
  • Raut R, Beesetti H, Tyagi P, et al. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol J. 2015;12:16. doi:10.1186/s12985-015-0248-x.
  • Lescar J, Luo D, Xu T, et al. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from dengue virus as a target. Antiviral Res. 2008;80(2):94–101. doi:10.1016/j.antiviral.2008.07.001.
  • Wu J, Bera AK, Kuhn RJ, et al. Structure of the flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J Virol. 2005;79(16):10268–10277. doi:10.1128/JVI.79.16.10268-10277.2005.
  • Wengler G, Wengler G. The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology. 1993;197(1):265–273. doi:10.1006/viro.1993.1587.
  • Matusan AE, Pryor MJ, Davidson AD, et al. Mutagenesis of the dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol. 2001;75(20):9633–9643. doi:10.1128/JVI.75.20.9633-9643.2001.
  • Shadrick WR, Ndjomou J, Kolli R, et al. Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen. 2013;18(7):761–781. doi:10.1177/1087057113482586.
  • Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67(8):1884–1894. doi:10.1093/jac/dks147.
  • Tomlinson SM, Watowich SJ. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral Res. 2012;93(2):245–252. doi:10.1016/j.antiviral.2011.12.003.
  • Byrd CM, Grosenbach DW, Berhanu A, et al. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob Agents Chemother. 2013;57(4):1902–1912. doi:10.1128/AAC.02251-12.
  • Dropulic LK, Cohen JI. Update on new antivirals under development for the treatment of double-stranded DNA virus infections. Clin Pharmacol Ther. 2010;88(5):610–619. doi:10.1038/clpt.2010.178.
  • Basavannacharya C, Vasudevan SG. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun. 2014;453(3):539–544. doi:10.1016/j.bbrc.2014.09.113.
  • Sweeney NL, Hanson AM, Mukherjee S, et al. Benzothiazole and pyrrolone flavivirus inhibitors targeting the viral helicase. ACS Infect Dis. 2015;1(3):140–148. doi:10.1021/id5000458.
  • Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol. 1991;72(9):2197–2206. doi:10.1099/0022-1317-72-9-2197.
  • Koonin EV. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and λ2 protein of reovirus. J Gen Virol. 1993;74(4):733–740. doi:10.1099/0022-1317-74-4-733.
  • Dong H, Chang DC, Xie X, et al. Biochemical and genetic characterization of dengue virus methyltransferase. Virology. 2010;405(2):568–578. doi:10.1016/j.virol.2010.06.039.
  • Züst R, Dong H, Li X-F, et al. Rational design of a live attenuated dengue vaccine: 2′-O-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog. 2013;9(8):e1003521. doi:10.1371/journal.ppat.1003521.
  • Lim SP, Sonntag LS, Noble C, et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem. 2011;286(8):6233–6240. doi:10.1074/jbc.M110.179184.
  • Noble CG, Li S-H, Dong H, et al. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Antiviral Res. 2014;111:78–81. doi:10.1016/j.antiviral.2014.09.003.
  • Brecher MB, Li Z, Zhang J, et al. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci. 2015;24(1):117–128. doi:10.1002/pro.2594.
  • Brecher M, Chen H, Li Z, et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect Dis. 2015;1(8):340–349. doi:10.1021/acsinfecdis.5b00070.
  • Zhao Y, Soh TS, Zheng J, et al. A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog. 2015;11(3):e1004682. doi:10.1371/journal.ppat.1004682.
  • Dong H, Liu L, Zou G, et al. Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J Biol Chem. 2010;285(42):32586–32595. doi:10.1074/jbc.M110.129197.
  • Tamilvanan T, Hopper W. Active site specific pharmacophore-based screening for methyltransferase inhibitors. J Pharm Res. 2013;7(1):121–126. doi:10.1016/j.jopr.2013.01.016.
  • Coutard B, Decroly E, Li C, et al. Assessment of dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res. 2014;106:61–70. doi:10.1016/j.antiviral.2014.03.013.
  • Zhao Y, Soh TS, Lim SP, et al. Molecular basis for specific viral RNA recognition and 2ʹ-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A. 2015;112(48):14834–14839. doi:10.1073/pnas.1514978112.
  • Geiss BJ, Stahla-Beek HJ, Hannah AM, et al. A high-throughput screening assay for the identification of flavivirus NS5 capping enzyme GTP-binding inhibitors: implications for antiviral drug development. J Biomol Screen. 2011;16(8):852–861. doi:10.1177/1087057111412183.
  • Lim SP, Wen D, Yap TL, et al. A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase—kinetic and inhibition analyses. Antiviral Res. 2008;80(3):360–369. doi:10.1016/j.antiviral.2008.08.005.
  • Barral K, Sallamand C, Petzold C, et al. Development of specific dengue virus 2′-O- and N7-methyltransferase assays for antiviral drug screening. Antiviral Res. 2013;99(3):292–300. doi:10.1016/j.antiviral.2013.06.001.
  • Falk SP, Weisblum B. Aptamer displacement screen for flaviviral RNA methyltransferase inhibitors. J Biomol Screen. 2014;19(8):1147–1153. doi:10.1177/1087057114533147.
  • Li X-D, Shan C, Deng C-L, et al. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis. 2014;8(5):e2891. doi:10.1371/journal.pntd.0002891.
  • Lu G, Gong P. Crystal structure of the full-length japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog. 2013;9(8):e1003549. doi:10.1371/journal.ppat.1003549.
  • Wu J, Lu G, Zhang B, et al. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J Virol. 2015;89(1):249–261. doi:10.1128/JVI.02085-14.
  • Li S-H, Dong H, Li X-F, et al. Rational design of a flavivirus vaccine by abolishing viral RNA 2′-O methylation. J Virol. 2013;87(10):5812–5819. doi:10.1128/JVI.02806-12.
  • De Clercq E, Neyts J. Antiviral agents acting as DNA or RNA chain terminators. In: Kräusslich H-G, Bartenschlager R, editors. Antiviral strategies. Berlin: Springer; 2009. p. 53–84.
  • Sofosbuvir (Sovaldi). Hepatitis C Online 2015 [cited 2015 Dec 14]; Available from: http://www.hepatitisc.uw.edu/page/treatment/drugs/sofosbuvir-drug
  • Chatelain G, Debing Y, De Burghgraeve T, et al. In search of flavivirus inhibitors: Evaluation of different tritylated nucleoside analogues. Eur J Med Chem. 2013;65:249–255. doi:10.1016/j.ejmech.2013.04.034.
  • Saudi M, Zmurko J, Kaptein S, et al. In search of Flavivirus inhibitors part 2: tritylated, diphenylmethylated and other alkylated nucleoside analogues. Eur J Med Chem. 2014;76:98–109. doi:10.1016/j.ejmech.2014.02.011.
  • De Burghgraeve T, Selisko B, Kaptein S, et al. 3′,5′Di-O-trityluridine inhibits in vitro flavivirus replication. Antiviral Res. 2013;98(2):242–247. doi:10.1016/j.antiviral.2013.01.011.
  • Eyer L, Valdés JJ, Gil VA, et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother. 2015;59(9):5483–5493. doi:10.1128/AAC.00807-15.
  • Yin Z, Chen Y-L, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci U S A. 2009;106(48):20435–20439. doi:10.1073/pnas.0907010106.
  • Pastor-Anglada M, Cano-Soldado P, Molina-Arcas M, et al. Cell entry and export of nucleoside analogues. Virus Res. 2005;107(2):151–164. doi:10.1016/j.virusres.2004.11.005.
  • Chen Y-L, Yin Z, Lakshminarayana SB, et al. Inhibition of dengue virus by an ester prodrug of an adenosine analog. Antimicrob Agents Chemother. 2010;54(8):3255–3261. doi:10.1128/AAC.00397-10.
  • Klumpp K, Lévêque V, Le Pogam S, et al. The novel nucleoside analog R1479 (4′-Azidocytidine) is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. J Biol Chem. 2006;281(7):3793–3799. doi:10.1074/jbc.M510195200.
  • Nguyen NM, Tran CNB, Phung LK, et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis. 2013;207(9):1442–1450. doi:10.1093/infdis/jis470.
  • Poynard T, Marcellin P, Lee SS, et al. Randomised trial of interferon α2b plus ribavirin for 48 weeks or for 24 weeks versus interferon α2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. The Lancet. 1998;352(9138):1426–1432. doi:10.1016/S0140-6736(98)07124-4.
  • Ojwang JO, Ali S, Smee DF, et al. Broad-spectrum inhibitor of viruses in the flaviviridae family. Antiviral Res. 2005;68(2):49–55. doi:10.1016/j.antiviral.2005.06.002.
  • Nelson J, Roe K, Orillo B, et al. Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection. Antiviral Res. 2015;122:39–45. doi:10.1016/j.antiviral.2015.07.008.
  • Parkinson T. Small molecule drug discovery for Dengue and West Nile viruses: applying experience from hepatitis C virus. Future Med Chem. 2010;2(7):1181–1203. doi:10.4155/fmc.10.195.
  • Nall TA, Chappell KJ, Stoermer MJ, et al. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem. 2004;279(47):48535–48542. doi:10.1074/jbc.M406810200.
  • Sarathy VV, Milligan GN, Bourne N, et al. Mouse models of dengue virus infection for vaccine testing. Vaccine. 2015;33(50):7051–7060. doi:10.1016/j.vaccine.2015.09.112.
  • Chan KWK, Watanabe S, Kavishna R, et al. Animal models for studying dengue pathogenesis and therapy. Antiviral Res. 2015;123:5–14. doi:10.1016/j.antiviral.2015.08.013.
  • Lim SP, Wang Q-Y, Noble CG, et al. Ten years of dengue drug discovery: progress and prospects. Antiviral Res. 2013;100(2):500–519. doi:10.1016/j.antiviral.2013.09.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.