1,159
Views
35
CrossRef citations to date
0
Altmetric
Review

Developments in SPR Fragment Screening

&
Pages 489-499 | Received 15 Jan 2016, Accepted 29 Feb 2016, Published online: 21 Mar 2016

References

  • Erlanson DA, Jahnke W, Mannhold R, et al. Fragment-based drug discovery: lessons and outlook. Hoboken (NJ): John Wiley & Sons; 2016. p. 524.
  • Retra K, Irth H, Van Muijlwijk-Koezen JE. Surface plasmon resonance biosensor analysis as a useful tool in FBDD. Drug Discov Today Technol. 2010;7(3):e181–7.
  • Erlanson D, Zarlter T Fragments in the clinic: 2015 edition [Internet]. Practical Fragments. 2015. Available from: http://practicalfragments.blogspot.fr/2015/01/fragments-in-clinic-2015-edition.html
  • Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1(3):187–192.
  • Kenny PW, Leitão A, Montanari CA. Ligand efficiency metrics considered harmful. J Comput Aided Mol Des. 2014;28(7):699–710.
  • Kenny P Molecular Design: Rule of Three considered harmful? [Internet]. [cited 2015 Nov 10]. Available from: http://fbdd-lit.blogspot.fr/2011/01/rule-of-three-considered-harmful.html
  • Elinder M, Geitmann M, Gossas T, et al. Experimental validation of a fragment library for lead discovery using SPR biosensor technology. J Biomol Screen. 2011;16(1):15–25.
  • Karlsson R, Fält A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods. 1997;200(1–2):121–133.
  • Abdiche Y, Malashock D, Pinkerton A, et al. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem. 2008;377(2):209–217.
  • Rich RL, Myszka DG. Kinetic analysis and fragment screening with Fujifilm AP-3000. Anal Biochem. 2010;402(2):170–178.
  • Rich RL, Quinn JG, Morton T, et al. Biosensor-based fragment screening using FastStep injections. Anal Biochem. 2010;407(2):270–277.
  • Rich RL, Myszka DG. Why you should be using more SPR biosensor technology. Drug Discov Today Technol. 2004;1(3):301–308.
  • Navratilova I, Hopkins AL. Emerging role of surface plasmon resonance in fragment-based drug discovery. Future Med Chem. 2011;3(14):1809–1820.
  • Hämäläinen MD, Zhukov A, Ivarsson M, et al. Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen. 2008;13(3):202–229.
  • Boettcher A, Ruedisser S, Erbel P, et al. Fragment-based screening by biochemical assays: systematic feasibility studies with trypsin and MMP12. J Biomol Screen. 2010;15(9):1029–41.
  • Nordström H, Gossas T, Hämäläinen M, et al. Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library. J Med Chem. 2008;51(12):3449–3459.
  • Pollack SJ, Beyer KS, Lock C, et al. A comparative study of fragment screening methods on the p38α kinase: new methods, new insights. J Comput Aided Mol Des. 2011;25(7):677–687.
  • Shepherd CA, Hopkins AL, Navratilova I. Fragment screening by SPR and advanced application to GPCRs. Prog Biophys Mol Biol. 2014;116(2–3):113–123.
  • Aristotelous T, Ahn S, Shukla AK, et al. Discovery of β2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med Chem Lett. 2013;4(10):1005–1010.
  • Bower JF, Pannifer A. Using fragment-based technologies to target protein-protein interactions. Curr Pharm Des. 2012;18(30):4685–4696.
  • Rouhana J, Hoh F, Estaran S, et al. Fragment-based identification of a locus in the Sec7 domain of Arno for the design of protein-protein interaction inhibitors. J Med Chem. 2013;56(21):8497–8511.
  • Hennig M, Ruf A, Huber W. Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem. 2012;317:115–143.
  • Giannetti AM. From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol. 2011;493:169–218.
  • Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit JMR. 2004;17(3):151–161.
  • Kretschmann E. Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results. Opt Commun. 1972;6(2):185–187.
  • SPR Instruments [Internet]. [cited 2016 Feb 26]. Available from: http://www.sprpages.nl/instruments
  • Neumann T, Junker H-D, Schmidt K, el al SPR-based fragment screening: advantages and applications. Curr Top Med Chem. 2007;7(16):1630–1642.
  • Quinn JG. Evaluation of Taylor dispersion injections: determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal Biochem. 2012;421(2):401–410.
  • Giannetti AM, Gilbert HN, Huddler DP, et al. CHAPTER 2. In: CHAPTER 2: Getting the Most Value from Your Screens: Advances in Hardware, Software, and Methodologies to Enhance Surface Plasmon Resonance Based Fragment Screening and Hit-to-Lead Support [Internet]. 2015 [cited 2015 Nov 18]. Available from: http://pubs.rsc.org/en/content/chapter/bk9781849739085-00019/978-1-84973-908-5.
  • FBLD_Application_Note.pdf [Internet]. [cited 2015 Nov 26]. Available from: https://www.sensiqtech.com/uploads/file/applications/FBLD_Application_Note.pdf
  • Patching SG. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta. 2014;1838(1 Pt A):43–55.
  • Maynard JA, Lindquist NC, Sutherland JN, et al. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J. 2009;4(11):1542–1558.
  • Papalia G, Myszka D. Exploring minimal biotinylation conditions for biosensor analysis using capture chips. Anal Biochem. 2010;403(1–2):30–35.
  • Congreve M, Rich RL, Myszka DG, et al. Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Methods Enzymol. 2011;493:115–136.
  • Hennig M, Ruf A, Huber W. Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem. 2012;317:115–143.
  • Giannetti AM, Koch BD, Browner MF. Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem. 2008;51(3):574–580.
  • McGovern SL, Helfand BT, Feng B, et al. A specific mechanism of nonspecific inhibition. J Med Chem. 2003;46(20):4265–4272.
  • Perspicace S, Banner D, Benz J, et al. Fragment-based screening using surface plasmon resonance technology. J Biomol Screen. 2009;14(4):337–349.
  • Giannetti AM, Zheng X, Skelton NJ, et al. Fragment-based identification of amides derived from trans-2-(pyridin-3-yl)cyclopropanecarboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). J Med Chem. 2014;57(3):770–792.
  • Karlsson R, Kullman-Magnusson M, et al. Biosensor analysis of drug-target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal Biochem. 2000;278(1):1–13.
  • Pfaff SJ, Chimenti MS, Kelly MJS, et al. Biophysical methods for identifying fragment-based inhibitors of protein-protein interactions. Methods Mol Biol Clifton NJ. 2015;1278:587–613.
  • Harner MJ, Frank AO, Fesik SW. Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR. 2013;56(2):65–75.
  • Dalvit C. NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today. 2009;14(21–22):1051–1057.
  • Patel D, Bauman JD, Arnold E. Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery. Prog Biophys Mol Biol. 2014;116(2–3):92–100.
  • Meyer B, Klein J, Mayer M, et al. Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities. Ernst Scher Res Found Workshop. 2004;(44):149–167.
  • Dalvit C, Pevarello P, Tatò M, et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR. 2000;18(1):65–68.
  • Shuker SB, Hajduk PJ, Meadows RP, et al. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996;274(5292):1531–1534.
  • Maurer T. Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy. Methods Enzymol. 2011;493:469–485.
  • Manjasetty BA, Turnbull AP, Panjikar S, et al. Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics. 2008;8(4):612–625.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Congreve M, Langmead CJ, Mason JS, et al. Progress in structure based drug design for g protein-coupled receptors. J Med Chem. 2011;54(13):4283–4311.
  • Christopher JA, Brown J, Doré AS, et al. Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem. 2013;56:3446–3455.
  • Robertson N, Jazayeri A, Errey J, et al. The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology. 2011;60(1):36–44.
  • Navratilova I, Besnard J, Hopkins AL. Screening for GPCR ligands using surface plasmon resonance. ACS Med Chem Lett. 2011;2(7):549–554.
  • Wallace TL, Porter RHP. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol. 2011;82(8):891–903.
  • Spurny R, Debaveye S, Farinha A, et al. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 2015;112(19):E2543–52.
  • Grädler U, Bomke J, Musil D, et al. Fragment-based discovery of focal adhesion kinase inhibitors. Bioorg Med Chem Lett. 2013;23(19):5401–5409.
  • Nordström H, Gossas T, Hämäläinen M, et al. Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library. J Med Chem. 2008;51(12):3449–3459.
  • Boettcher A, Ruedisser S, Erbel P, et al. Fragment-based screening by biochemical assays: systematic feasibility studies with trypsin and MMP12. J Biomol Screen. 2010;15:1029–1041.
  • Fischer G, Rossmann M, Hyvönen M. Alternative modulation of protein-protein interactions by small molecules. Curr Opin Biotechnol. 2015;35:78–85.
  • Magee TV. Progress in discovery of small-molecule modulators of protein-protein interactions via fragment screening. Bioorg Med Chem Lett. 2015;25(12):2461–2468.
  • Smith MC, Gestwicki JE. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med. 2012;14:e16.
  • Valkov E, Sharpe T, Marsh M, et al. Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem. 2012;317:145–179.
  • Thangudu RR, Bryant SH, Panchenko AR, et al. Modulating protein-protein interactions with small molecules: the importance of binding hotspots. J Mol Biol. 2012;415(2):443–453.
  • Wiley: Small Molecule Medicinal Chemistry: Strategies and Technologies - Werngard Czechtizky, Peter Hamley [Internet]. [cited 2015 Dec 20]. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118771605,subjectCd-CH80.html
  • Kuo LC. Fragment-based drug design: tools, practical approaches, and examples. San Diego (CA): Academic Press; 2011. p. 662.
  • Day YSN, Baird CL, Rich RL, et al. Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci Publ Protein Soc. 2002;11(5):1017–1025.
  • Wielens J, Headey SJ, Rhodes DI, et al. Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? J Biomol Screen. 2013;18(2):147–159.
  • Konteatis ZD. In silico fragment-based drug design. Expert Opin Drug Discov. 2010;5(11):1047–1065.
  • Erlanson DA. Introduction to fragment-based drug discovery. Top Curr Chem. 2012;317:1–32.
  • de Kloe GE, Retra K, Geitmann M, et al. Surface plasmon resonance biosensor based fragment screening using acetylcholine binding protein identifies ligand efficiency hot spots (LE hot spots) by deconstruction of nicotinic acetylcholine receptor α7 ligands. J Med Chem. 2010;53(19):7192–7201.
  • Wu B, Barile E, De SK, et al. High-throughput screening by nuclear magnetic resonance (HTS by NMR) for the identification of PPIs antagonists. Curr Top Med Chem. 2015;15(20):2032–2042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.