478
Views
17
CrossRef citations to date
0
Altmetric
Review

Structure-guided design of small-molecule therapeutics against RSV disease

&
Pages 543-556 | Received 12 Jan 2016, Accepted 31 Mar 2016, Published online: 21 Apr 2016

References

  • Collins PLCJ Jr. Respiratory syncytial virus and metapneumoviruses. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott, Williams, & Wilkins; 2007. p. 1601–1645.
  • Shay DK, Holman RC, Roosevelt GE, et al. Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979-1997. J Infect Dis. 2001;183:16–22. doi:10.1086/317655.
  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–2128. doi:10.1016/S0140-6736(12)61728-0.
  • Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375:1545–1555. doi:10.1016/S0140-6736(10)60206-1.
  • Falsey AR. Respiratory syncytial virus infection in elderly and high-risk adults. Exp Lung Res. 2005;31(Suppl 1):77.
  • Lee N, Lui GC, Wong KT, et al. High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections. Clin Infect Dis. 2013;57:1069–1077. doi:10.1093/cid/cit471.
  • DeVincenzo JP, Wilkinson T, Vaishnaw A, et al. Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2010;182:1305–1314. doi:10.1164/rccm.201002-0221OC.
  • DeVincenzo JP, El Saleeby CM, Bush AJ. Respiratory syncytial virus load predicts disease severity in previously healthy infants. J Infect Dis. 2005;191:1861–1868. doi:10.1086/430008.
  • El Saleeby CM, Bush AJ, Harrison LM, et al. Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. J Infect Dis. 2011;204:996–1002. doi:10.1093/infdis/jir494.
  • Mahadevia PJ, Malinoski FJ. Cost-effectiveness of respiratory syncytial virus prophylaxis with palivizumab. Arch Pediatr Adolesc Med. 2007;161:519–520. author reply 520. doi:10.1001/archpedi.161.5.519.
  • Weiner LB, Masaquel AS, Polak MJ, et al. Cost-effectiveness analysis of palivizumab among pre-term infant populations covered by Medicaid in the United States. J Med Econ. 2012;15:997–1018. doi:10.3111/13696998.2012.672942.
  • Anderson LJ, Parker RA, Strikas RL. Association between respiratory syncytial virus outbreaks and lower respiratory tract deaths of infants and young children. J Infect Dis. 1990;161:640–646.
  • Groothuis JR, Woodin KA, Katz R, et al. Early ribavirin treatment of respiratory syncytial viral infection in high-risk children. J Pediatr. 1990;117:792–798.
  • Johnson DW. Croup. BMJ Clin Evid. 2009;2009:0321.
  • Forster A, Maertens GN, Farrell PJ, et al. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol. 2015;89:4624–4635. doi:10.1128/JVI.03500-14.
  • DeVincenzo JP, Whitley RJ, Mackman RL, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med. 2014;371:711–722. doi:10.1056/NEJMoa1401184.
  • Wang G, Deval J, Hong J, et al. Discovery of 4ʹ-chloromethyl-2ʹ-deoxy-3ʹ,5ʹ-di-O-isobutyryl-2ʹ-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection. J Med Chem. 2015;58:1862–1878. doi:10.1021/jm5017279.
  • DeVincenzo J, Fathi H, Mcclure M, et al. Treatment with oral ALS-008176, a nucleoside analog, rapidly reduces RSV viral load and clinical disease severity in a healthy volunteer challenge study. Open Forum Infect Dis. 2014;1:S66–S69. doi:10.1093/ofid/ofu083.
  • Krzyzaniak MA, Zumstein MT, Gerez JA, et al. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 2013;9:e1003309. doi:10.1371/journal.ppat.1003309.
  • McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus surface glycoproteins. Curr Top Microbiol Immunol. 2013;372:83–104. doi:10.1007/978-3-642-38919-1_4.
  • Karron RA, Buonagurio DA, Georgiu AF, et al. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc Natl Acad Sci U S A. 1997;94:13961–13966.
  • Walsh EE, Hruska J. Monoclonal antibodies to respiratory syncytial virus proteins: identification of the fusion protein. J Virol. 1983;47:171–177.
  • Brindley MA, Plattet P, Plemper RK. Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Proc Natl Acad Sci U S A. 2014;111:E3795–3804. doi:10.1073/pnas.1403609111.
  • McLellan JS, Chen M, Leung S, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340:1113–1117. doi:10.1126/science.1234914.
  • Razinkov V, Gazumyan A, Nikitenko A, et al. RFI-641 inhibits entry of respiratory syncytial virus via interactions with fusion protein. Chem Biol. 2001;8:645–659.
  • Andries K, Moeremans M, Gevers T, et al. Substituted benzimidazoles with nanomolar activity against respiratory syncytial virus. Antiviral Res. 2003;60:209–219.
  • Wyde PR, Chetty SN, Timmerman P, et al. Short duration aerosols of JNJ 2408068 (R170591) administered prophylactically or therapeutically protect cotton rats from experimental respiratory syncytial virus infection. Antiviral Res. 2003;60:221–231.
  • McKimm-Breschkin J. VP-14637 ViroPharma. Curr Opin Investig Drugs. 2000;1:425–427.
  • Cianci C, Genovesi EV, Lamb L, et al. Oral efficacy of a respiratory syncytial virus inhibitor in rodent models of infection. Antimicrob Agents Chemother. 2004;48:2448–2454. doi:10.1128/AAC.48.7.2448-2454.2004.
  • Douglas JL, Panis ML, Ho E, et al. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J Virol. 2003;77:5054–5064.
  • Yan D, Lee S, Thakkar VD, et al. Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc Natl Acad Sci U S A. 2014;111:E3441–3449. doi:10.1073/pnas.1405198111.
  • Cianci C, Yu KL, Combrink K, et al. Orally active fusion inhibitor of respiratory syncytial virus. Antimicrob Agents Chemother. 2004;48:413–422.
  • Bonfanti JF, Meyer C, Doublet F, et al. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121). J Med Chem. 2008;51:875–896. doi:10.1021/jm701284j.
  • Roymans D, De Bondt HL, Arnoult E, et al. Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc Natl Acad Sci U S A. 2010;107:308–313. doi:10.1073/pnas.0910108106.
  • Battles MB, Langedijk JP, Furmanova-Hollenstein P, et al. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat Chem Biol. 2015. doi:10.1038/nchembio.1982.
  • Centers for Disease C, Prevention. Update: drug susceptibility of swine-origin influenza A (H1N1) viruses, April 2009. MMWR Morb Mortal Wkly Rep. 2009;58:433–435.
  • Stokes KL, Chi MH, Sakamoto K, et al. Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol. 2011;85:5782–5793. doi:10.1128/JVI.01693-10.
  • Yan D, Weisshaar M, Lamb K, et al. Replication-competent influenza virus and respiratory syncytial virus luciferase reporter strains engineered for co-infections identify antiviral compounds in combination screens. Biochemistry. 2015;54:5589–5604. doi:10.1021/acs.biochem.5b00623.
  • Grosfeld H, Hill MG, Collins PL. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol. 1995;69:5677–5686.
  • Yu Q, Hardy RW, Wertz GW. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol. 1995;69:2412–2419.
  • Collins PL, Hill MG, Camargo E, et al. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5ʹ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A. 1995;92:11563–11567.
  • Bakker SE, Duquerroy S, Galloux M, et al. The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid. J Gen Virol. 2013;94:1734–1738. doi:10.1099/vir.0.053025-0.
  • Liljeroos L, Krzyzaniak MA, Helenius A, et al. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci U S A. 2013. doi:10.1073/pnas.1309070110.
  • Tawar RG, Duquerroy S, Vonrhein C, et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science. 2009;326:1279–1283. doi:10.1126/science.1177634.
  • El Omari K, Dhaliwal B, Ren J, et al. Structures of respiratory syncytial virus nucleocapsid protein from two crystal forms: details of potential packing interactions in the native helical form. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67:1179–1183. doi:10.1107/S1744309111029228.
  • Khattar SK, Yunus AS, Samal SK. Mapping the domains on the phosphoprotein of bovine respiratory syncytial virus required for N-P and P-L interactions using a minigenome system. J Gen Virol. 2001;82:775–779. doi:10.1099/0022-1317-82-4-775.
  • Garcia J, Garcia-Barreno B, Vivo A, et al. Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22 K protein. Virology. 1993;195:243–247. doi:10.1006/viro.1993.1366.
  • Oliveira AP, Simabuco FM, Tamura RE, et al. Human respiratory syncytial virus N, P and M protein interactions in HEK-293T cells. Virus Res. 2013;177:108–112. doi:10.1016/j.virusres.2013.07.010.
  • Kingston RL, Hamel DJ, Gay LS, et al. Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci U S A. 2004;101:8301–8306. doi:10.1073/pnas.0402690101.
  • Cox R, Pickar A, Qiu S, et al. Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein. Proc Natl Acad Sci U S A. 2014;111:15208–15213. doi:10.1073/pnas.1413268111.
  • Yabukarski F, Lawrence P, Tarbouriech N, et al. Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol. 2014;21. doi:10.1038/nsmb.2868.
  • Llorente MT, Garcia-Barreno B, Calero M, et al. Structural analysis of the human respiratory syncytial virus phosphoprotein: characterization of an alpha-helical domain involved in oligomerization. J Gen Virol. 2006;87:159–169. doi:10.1099/vir.0.81430-0.
  • Karlin D, Ferron F, Canard B, et al. Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol. 2003;84:3239–3252. doi:10.1099/vir.0.19451-0.
  • Cox R, Green TJ, Purushotham S, et al. Structural and functional characterization of the mumps virus phosphoprotein. J Virol. 2013;87:7558–7568. doi:10.1128/JVI.00653-13.
  • Bruhn JF, Barnett KC, Bibby J, et al. Crystal structure of the nipah virus phosphoprotein tetramerization domain. J Virol. 2014;88:758–762. doi:10.1128/JVI.02294-13.
  • Ouizougun-Oubari M, Pereira N, Tarus B, et al. A druggable pocket at the nucleocapsid/phosphoprotein interaction site of human respiratory syncytial virus. J Virol. 2015;89:11129–11143. doi:10.1128/JVI.01612-15.
  • Leyrat C, Renner M, Harlos K, et al. Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus. PLoS One. 2013;8:e80371. doi:10.1371/journal.pone.0080371.
  • Galloux M, Gabiane G, Sourimant J, et al. Identification and characterization of the binding site of the respiratory syncytial virus phosphoprotein to RNA-free nucleoprotein. J Virol. 2015;89:3484–3496. doi:10.1128/JVI.03666-14.
  • Kolakofsky D, Le Mercier P, Iseni F, et al. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology. 2004;318:463–473.
  • Galloux M, Tarus B, Blazevic I, et al. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein. J Virol. 2012;86:8375–8387. doi:10.1128/JVI.00058-12.
  • Kingston RL, Baase WA, Gay LS. Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins. J Virol. 2004;78:8630–8640. doi:10.1128/JVI.78.16.8630-8640.2004.
  • Collins PL, Hill MG, Cristina J, et al. Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A. 1996;93:81–85.
  • Hardy RW, Wertz GW. The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J Virol. 1998;72:520–526.
  • Asenjo A, Calvo E, Villanueva N. Phosphorylation of human respiratory syncytial virus P protein at threonine 108 controls its interaction with the M2-1 protein in the viral RNA polymerase complex. J Gen Virol. 2006;87:3637–3642. doi:10.1099/vir.0.82165-0.
  • Mason SW, Aberg E, Lawetz C, et al. Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol. 2003;77:10670–10676.
  • Cartee TL, Wertz GW. Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol. 2001;75:12188–12197. doi:10.1128/JVI.75.24.12188-12197.2001.
  • Tanner SJ, Ariza A, Richard CA, et al. Crystal structure of the essential transcription antiterminator M2-1 protein of human respiratory syncytial virus and implications of its phosphorylation. Proc Natl Acad Sci U S A. 2014;111:1580–1585. doi:10.1073/pnas.1317262111.
  • Blondot ML, Dubosclard V, Fix J, et al. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog. 2012;8:e1002734. doi:10.1371/journal.ppat.1002734.
  • Cancellieri M, Bassetto M, Widjaja I, et al. In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Res. 2015;122:46–50. doi:10.1016/j.antiviral.2015.08.003.
  • Hamaguchi M, Yoshida T, Nishikawa K, et al. Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology. 1983;128:105–117.
  • Gupta AK, Mathur M, Banerjee AK. Unique capping activity of the recombinant RNA polymerase (L) of vesicular stomatitis virus: association of cellular capping enzyme with the L protein. Biochem Biophys Res Commun. 2002;293:264–268. doi:10.1016/S0006-291X(02)00217-6.
  • Ogino T, Kobayashi M, Iwama M, et al. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem. 2005;280:4429–4435. doi:10.1074/jbc.M411167200.
  • Poch O, Blumberg BM, Bougueleret L, et al. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol. 1990;71(Pt 5):1153–1162. doi:10.1099/0022-1317-71-5-1153.
  • Svenda M, Berg M, Moreno-Lopez J, et al. Analysis of the large (L) protein gene of the porcine rubulavirus LPMV: identification of possible functional domains. Virus Res. 1997;48:57–70.
  • Dochow M, Krumm SA, Crowe JE Jr., et al. Independent structural domains in the paramyxovirus polymerase protein. J Biol Chem. 2012. doi:10.1074/jbc.M111.325258.
  • Duprex WP, Collins FM, Rima BK. Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol. 2002;76:7322–7328.
  • Brown DD, Rima BK, Allen IV, et al. Rational attenuation of a morbillivirus by modulating the activity of the RNA-dependent RNA polymerase. J Virol. 2005;79:14330–14338. doi:10.1128/JVI.79.22.14330-14338.2005.
  • Liang B, Li Z, Jenni S, et al. Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell. 2015;162:314–327. doi:10.1016/j.cell.2015.06.018.
  • Cevik B, Holmes DE, Vrotsos E, et al. The phosphoprotein (P) and L binding sites reside in the N-terminus of the L subunit of the measles virus RNA polymerase. Virology. 2004;327:297–306. doi:10.1016/j.virol.2004.07.002.
  • Cevik B, Smallwood S, Moyer SA. The L-L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein. Virology. 2003;313:525–536.
  • Holmes DE, Moyer SA. The phosphoprotein (P) binding site resides in the N terminus of the L polymerase subunit of sendai virus. J Virol. 2002;76:3078–3083.
  • Horikami SM, Smallwood S, Bankamp B, et al. An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex. Virology. 1994;205:540–545. doi:10.1006/viro.1994.1676.
  • Smallwood S, Moyer SA. The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins. Virology. 2004;318:439–450. doi:10.1016/j.virol.2003.09.045.
  • Malur AG, Gupta NK, De Bishnu P, et al. Analysis of the mutations in the active site of the RNA-dependent RNA polymerase of human parainfluenza virus type 3 (HPIV3). Gene Expr. 2002;10:93–100.
  • Ogino T, Banerjee AK. Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell. 2007;25:85–97. doi:10.1016/j.molcel.2006.11.013.
  • Gopinath M, Shaila MS. RNA triphosphatase and guanylyl transferase activities are associated with the RNA polymerase protein L of rinderpest virus. J Gen Virol. 2009;90:1748–1756. doi:10.1099/vir.0.010975-0.
  • Ferron F, Longhi S, Henrissat B, et al. Viral RNA-polymerases – a predicted 2ʹ-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci. 2002;27:222–224.
  • Paesen GC, Collet A, Sallamand C, et al. X-ray structure and activities of an essential Mononegavirales L-protein domain. Nat Commun. 2015;6:8749. doi:10.1038/ncomms9749.
  • Issur M, Picard-Jean F, Bisaillon M. The RNA capping machinery as an anti-infective target. Wiley Interdiscip Rev RNA. 2011;2:184–192. doi:10.1002/wrna.43.
  • Murphy AM, Grdzelishvili VZ. Identification of sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol. 2009;83:1669–1681. doi:10.1128/JVI.01438-08.
  • Lim SV, Rahman MB, Tejo BA. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics. 2011;12(Suppl 13):S24. doi:10.1186/1471-2105-12-S13-S24.
  • De Clercq E, Neyts J. Antiviral agents acting as DNA or RNA chain terminators. Handb Exp Pharmacol. 2009;189:53–84.
  • Soriano V, Vispo E, De Mendoza C, et al. Hepatitis C therapy with HCV NS5B polymerase inhibitors. Expert Opin Pharmacother. 2013;14:1161–1170. doi:10.1517/14656566.2013.795543.
  • Wright PJ, Crameri G, Eaton BT. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Arch Virol. 2005;150:521–532. doi:10.1007/s00705-004-0417-5.
  • Crotty S, Andino R. Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes Infect. 2002;4:1301–1307.
  • Gilbert BE, Knight V. Biochemistry and clinical applications of ribavirin. Antimicrob Agents Chemother. 1986;30:201–205.
  • Furuta Y, Takahashi K, Fukuda Y, et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother. 2002;46:977–981.
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100:446–454. doi:10.1016/j.antiviral.2013.09.015.
  • Deval J, Hong J, Wang G, et al. Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2ʹ-fluoro-4ʹ-chloromethyl-cytidine triphosphate. PLoS Pathog. 2015;11:e1004995. doi:10.1371/journal.ppat.1004995.
  • Laganas VA, Dunn EF, McLaughlin RE, et al. Characterization of novel respiratory syncytial virus inhibitors identified by high throughput screen. Antiviral Res. 2014;115C:71–74.
  • De Bethune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antiviral Res. 2010;85:75–90. doi:10.1016/j.antiviral.2009.09.008.
  • Basavapathruni A, Anderson KS. Reverse transcription of the HIV-1 pandemic. FASEB J. 2007;21:3795–3808.
  • Usach I, Melis V, Peris JE. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc. 2013;16:1–14.
  • Das K, Clark AD Jr., Lewi PJ, et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem. 2004;47:2550–2560. doi:10.1021/jm030558s.
  • Matharu DS, Flaherty DP, Simpson DS, et al. Optimization of potent and selective quinazolinediones: inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity. J Med Chem. 2014;57:10314–10328. doi:10.1021/jm500902x.
  • Liuzzi M, Mason SW, Cartier M, et al. Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. J Virol. 2005;79:13105–13115. doi:10.1128/JVI.79.20.13105-13115.2005.
  • Tiong-Yip CL, Aschenbrenner L, Johnson KD, et al. Characterization of a respiratory syncytial virus L protein inhibitor. Antimicrob Agents Chemother. 2014;58:3867–3873. doi:10.1128/AAC.02540-14.
  • Yoon JJ, Krumm SA, Ndungu JM, et al. Target analysis of the experimental measles therapeutic AS-136A. Antimicrob Agents Chemother. 2009;53:3860–3870. doi:10.1128/AAC.00503-09.
  • Hwang H, Vreven T, Janin J, et al. Protein-protein docking benchmark version 4.0. Proteins. 2010;78:3111–3114. doi:10.1002/prot.22830.
  • Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21:1102–1114. doi:10.1016/j.chembiol.2014.09.001.
  • Labbe CM, Laconde G, Kuenemann MA, et al. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today. 2013;18:958–968. doi:10.1016/j.drudis.2013.05.003.
  • Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein-protein interactions. Nucleic Acids Res. 2013;41:D824–827. doi:10.1093/nar/gks1002.
  • Higueruelo AP, Schreyer A, Bickerton GR, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des. 2009;74:457–467. doi:10.1111/j.1747-0285.2009.00889.x.
  • Smith MC, Gestwicki JE. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med. 2012;14:e16. doi:10.1017/erm.2012.10.
  • Chapman J, Abbott E, Alber DG, et al. RSV604, a novel inhibitor of respiratory syncytial virus replication. Antimicrob Agents Chemother. 2007;51:3346–3353. doi:10.1128/AAC.00211-07.
  • Challa S, Scott AD, Yuzhakov O, et al. Mechanism of action for respiratory syncytial virus inhibitor RSV604. Antimicrob Agents Chemother. 2015;59:1080–1087. doi:10.1128/AAC.04119-14.
  • Marty F 2007. A double-blind, randomized, placebo-controlled study to evaluate the safety and efficacy of RSV604 in adults with respiratory syncytial virus infection following stem cell transplantation. IXth International Symposium on Respiratory Viral Infections, Causeway Bay, Hong Kong, 2007 Mar 3–6.
  • Mackman RL, Sangi M, Sperandio D, et al. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study. J Med Chem. 2015;58:1630–1643. doi:10.1021/jm5017768.
  • DeVincenzo JP, McClure MW, Symons JA, et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N Engl J Med. 2015;373:2048–2058. doi:10.1056/NEJMoa1413275.
  • Dent J, Grieve S, Harland R, et al. 2005. Multiple-dose safety and pharmacokinetics of A-60444, a novel compound active against respiratory syncytial virus (RSV). 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; Washington, DC.
  • Weiss WJ, Murphy T, Lynch ME, et al. Inhalation efficacy of RFI-641 in an African green monkey model of RSV infection. J Med Primatol. 2003;32:82–88.
  • Yu KL, Sin N, Civiello RL, et al. Respiratory syncytial virus fusion inhibitors. Part 4: optimization for oral bioavailability. Bioorg Med Chem Lett. 2007;17:895–901. doi:10.1016/j.bmcl.2006.11.063.
  • Safety Study of Oral BTA9881 to Treat RSV Infection. Biota Scientific Management Pty Ltd. U.S. National Institutes of Health. 2007. Available from: https://clinicaltrials.gov/ct2/show/NCT00504907.
  • Ispas G, Koul A, Verbeeck J, et al. Antiviral activity of TMC353121, a Respiratory Syncytial Virus (RSV) fusion inhibitor, in a non-human primate model. PLoS One. 2015;10:e0126959. doi:10.1371/journal.pone.0126959.
  • A Trial to Assess the Safety, Tolerability and Pharmacokinetics of MDT-637 in Healthy Volunteers. MicroDose Therapeutx, Inc. U.S. National Institute of Health. 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01489306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.