301
Views
29
CrossRef citations to date
0
Altmetric
Reviews

The future of microfluidic assays in drug development

&
Pages 1237-1253 | Published online: 28 Sep 2008

Bibliography

  • Hughes B. 2007 FDA drug approvals: a year of flux. Nat Rev 2008;7(2):107-9
  • Jones D. Keeping vigilant about drug safety. Nat Rev Drug Discov 2007;6:855-6
  • Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev 2004;3(5):417-29
  • Hawkes S, Chapela M, Montembault M. Leveraging the advantages offered by microfluidics to enhance the drug discovery process. QSAR Comb Sci 2005;24:712-21
  • Woodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Ann Rev Med 2008;59:1-12
  • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442(7101):368-73
  • Weigl BH, Bardell RL, Cabrera CR. Lab-on-a-chip for drug development. Adv Drug Deliv Rev 2003;55(3):349-77
  • Smith C. Tools for drug discovery: tools of the trade. Nature 2007;446(7132):219-22
  • Pihl J, Karlsson M, Chiu DT. Microfluidic technologies in drug discovery. Drug Discov Today 2005;10(20):1377-83
  • Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev 2006;5(3):210-8
  • Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 2008;13(1-2):1-13
  • Ziaie B, Baldi A, Lei M, et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 2004;56(2):145-72
  • Xia Y, Whitesides GM. Soft lithography. Ann Rev Mater Sci 1998;28:153-84
  • Whitesides GM, Ostuni E, Takayama S, et al. Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 2001;3:335-73
  • Zaouk R, Park BY, Madou MJ. Introduction to microfabrication techniques. Methods Mol Biol 2006;321:5-15
  • Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Ann Rev Biomed Eng 2002;4:261-86
  • Delamarche E, Junker D, Schmid H. Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater 2005;17:2911-33
  • Song S, Singh AK. On-chip sample preconcentration for integrated microfluidic analysis. Anal Bioanal Chem 2006;384(1):41-3
  • Legendre LA, Bienvenue JM, Roper MG, et al. A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 2006;78(5):1444-51
  • Jung B, Bharadwaj R, Santiago JG. On-chip millionfold sample stacking using transient isotachophoresis. Anal Chem 2006;78(7):2319-27
  • Wang YC, Stevens AL, Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 2005;77(14):4293-9
  • Long Z, Liu D, Ye N, et al. Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis. Electrophoresis 2006;27(24):4927-34
  • Kim S, Huang B, Zare RN. Microfluidic separation and capture of analytes for single-molecule spectroscopy. Lab Chip 2007;7(12):1663-5
  • Meagher RJ, Light YK, Singh AK. Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab Chip 2008;8(4):527-32
  • Petersson F, Aberg L, Sward-Nilsson AM, Laurell T. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 2007;79(14):5117-23
  • Emrich CA, Medintz IL, Chu WK, Mathies RA. Microfabricated two-dimensional electrophoresis device for differential protein expression profiling. Anal Chem 2007;79(19):7360-6
  • Wu D, Qin J, Lin B. Electrophoretic separations on microfluidic chips. J Chromatogr 2008;1184(1-2):542-59
  • Staes A, Timmerman E, Van Damme J, et al. Assessing a novel microfluidic interface for shotgun proteome analyses. J Sep Sci 2007;30(10):1468-76
  • Moon H, Wheeler AR, Garrell RL, et al. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 2006;6(9):1213-9
  • Lazar IM, Trisiripisal P, Sarvaiya HA. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal Chem 2006;78(15):5513-24
  • Yang Y, Kameoka J, Wachs T, Henion JD, Craighead HG. Quantitative mass spectrometric determination of methylphenidate concentration in urine using an electrospray ionization source integrated with a polymer microchip. Anal Chem 2004;76(9):2568-74
  • DeVoe DL, Lee CS. Microfluidic technologies for MALDI-MS in proteomics. Electrophoresis 2006;27(18):3559-68
  • Koster S, Verpoorte E. A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. Lab Chip 2007;7(11):1394-12
  • Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 1999;71(23):5340-7
  • Garcia E, Hasenbank MS, Finlayson B, Yager P. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 2007;7(2):249-55
  • Jeon NL, Dertinger S, Chiu DT, et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 2000;16:8311-6
  • Wei CW, Cheng JY, Young TH. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomed Microdevices 2006;8(1):65-71
  • Zaari N, Rajagopalan P, Kim S, et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 2004;16:2133-7
  • Hung PJ, Lee PJ, Sabounchi P, et al. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bio Eng 2005;89(1):1-8
  • Dertinger S, Chiu DT, Jeon NL. Generation of gradients having complex shapes using microfluidic networks. Anal Chem 2001;73:1240-6
  • Lin F, Saadi W, Rhee SW, et al. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 2004;4(3):164-7
  • Irimia D, Geba DA, Toner M. Universal microfluidic gradient generator. Anal Chem 2006;78(10):3472-7
  • Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 2006;6(3):389-93
  • Wu H, Huang B, Zare RN. Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 2006;128(13):4194-5
  • Chen L, Azizi F, Mastrangelo CH. Generation of dynamic chemical signals with microfluidic C-DACs. Lab Chip 2007;7(7):850-5
  • Gao X, Zhou X, Gulari E. Light directed massively parallel on-chip synthesis of peptide arrays with t-Boc chemistry. Proteomics 2003;3(11):2135-41
  • Tan WH, Takeuchi S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci USA 2007;104(4):1146-51
  • Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip 2006;6(11):1445-9
  • Wu LY, Di Carlo D, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 2008;10(2):197-202
  • Young SM, Curry MS, Ransom JT, et al. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening. J Biomol Screen 2004;9(2):103-11
  • Wang WU, Chen C, Lin KH, et al. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 2005;102(9):3208-12
  • Wang J, Bunimovich YL, Sui G, et al. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem Commun (Camb) 2006;7(29):3075-7
  • Zhang CY, Johnson LW. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Anal Chem 2006;78(15):5532-7
  • Wang W, Zhao L, Zhang JR, et al. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique. J Chromatogr 2006;1136(1):111-7
  • Wang A, Xu J, Zhang Q, HY C. The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 2006;69:210-5
  • Zhang Q, Xu JJ, Liu Y, Chen HY. In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008;8(2):352-7
  • Takei G, Nonogi M, Hibara A, et al. Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 2007;7(5):596-602
  • Fu J, Mao P, Han J. Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett 2005;87:263902
  • Kuo CW, Shiu JY, Wei KH, Chen P. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation. J Chromatogr 2007;1162(2):175-9
  • Perrin D, Fremaux C, Scheer A. Assay development and screening of a serine/threonine kinase in an on-chip mode using caliper nanofluidics technology. J Biomol Screen 2006;11(4):359-68
  • Malmstadt N, Nash MA, Purnell RF, Schmidt JJ. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 2006;6(9):1961-5
  • Suzuki H, Tabata KV, Noji H, Takeuchi S. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. Biosens Bioelectron 2007;22(6):1111-5
  • Suzuki H, Tabata KV, Noji H, Takeuchi S. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. Langmuir 2006;22(4):1937-42
  • Sandison M, Zagnoni M, Abu-Hantash M, Morgan H. Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J Micromech Microeng 2007;17:S189-96
  • Kreir M, Farre C, Beckler M, et al. Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes. Lab Chip 2008;8(4):587-95
  • Giuliano KA, Haskins JR, Taylor DL. Advances in high content screening for drug discovery. Assay Drug Dev Technol 2003;1(4):565-77
  • Wang J, Bao N, Paris LL, et al. Detection of kinase translocation using microfluidic electroporative flow cytometry. Anal Chem 2008;80(4):1087-93
  • Terstappen GC, Schlupen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev 2007;6(11):891-903
  • Ignatenko NA, Yerushalmi HF, Watts GS, et al. Pharmacogenomics of the polyamine analog 3,8,13,18-tetraaza-10,11-[(E)-1,2-cyclopropyl]eicosane tetrahydrochloride, CGC-11093, in the colon adenocarcinoma cell line HCT1161. Technol Cancer Res Treat 2006;5(6):553-64
  • Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 2004;101(47):16594-9
  • Towbin H, Bair KW, DeCaprio JA, et al. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J Biol Chem 2003;278(52):52964-71
  • Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature 2001;411(6833):107-10
  • Snyder JR, Hall A, Ni-Komatsu L, et al. Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol 2005;12(4):477-84
  • Watts P, Haswell SJ. Microfluidic combinatorial chemistry. Curr Opin Chem Biol 2003;7(3):380-7
  • Jones R, Godorhazy L, Szalay D, et al. A novel method for high-throughput reduction of compounds through automated sequential injection into a continuous-flow microfluidic reactor. QSAR Comb Sci 2005;24:722-7
  • Yeh HC, Puleo CM, Lim TC, et al. A microfluidic-FCS platform for investigation on the dissociation of Sp1-DNA complex by doxorubicin. Nucleic Acids Res 2006;34(21):e144
  • Tran L, Farinas J, Ruslim-Litrus L, et al. Agonist-induced calcium response in single human platelets assayed in a microfluidic device. Anal Biochem 2005;341(2):361-8
  • Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 2007;59(7):546-67
  • Kramer JA, Sagartz JE, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev 2007;6(8):636-49
  • Tani H, Maehana K, Kamidate T. On-chip bioassay using immobilized sensing bacteria in three-dimensional microfluidic network. Methods Mol Biol 2007;385:37-52
  • Matsui N, Kaya T, Nagamine K, et al. Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 2006;21(7):1202-9
  • Ionescu-Zanetti C, Shaw RM, Seo J, et al. Mammalian electrophysiology on a microfluidic platform. Proc Natl Acad Sci USA 2005;102(26):9112-7
  • Mathes C. QPatch: the past, present and future of automated patch clamp. Expert Opin Ther Targets 2006;10(2):319-27
  • Xu J, Chen Y, Li M. High-throughput technologies for studying potassium channels – progresses and challenges. Drug Discov Today Targets 2004;3(1):32-8
  • Du WB, Fang Q, Fang ZL. Microfluidic sequential injection analysis in a short capillary. Anal Chem 2006;78(18):6404-10
  • Miller EM, Wheeler AR. A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 2008;80(5):1614-9
  • Perrin D, Fremaux C, Besson D, et al. A microfluidics-based mobility shift assay to discover new tyrosine phosphatase inhibitors. J Biomol Screen 2006;11(8):996-1004
  • Sweeney LM, Shuler ML, Babish JG, Ghanem A. A cell culture analog of rodent physiology: application to naphthalene toxicology. Toxic In vitro 1995;9:307-16
  • Sin A, Reardon CF, Shuler ML. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combing soft lithography and traditional machining. Biotechnol Bioeng 2004;85(3):359-63
  • Shuler ML, Ghanem A, Quick D, et al. A Self-regulating cell culture analog device to mimic animal and human toxicological responses. Biotechnol Bioeng 1996;52:45-60
  • Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog 2004;20(1):316-23
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog 2004;20(2):590-7
  • Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol Prog 2003;19(2):243-53
  • Sin A, Chin KC, Jamil MF, et al. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 2004;20(1):338-45
  • Yang ST, Zhang X, Wen Y. Microbioreactors for high-throughput cytotoxicity assays. Curr Opin Drug Discov Dev 2008;11(1):111-27
  • Hung PJ, Lee PJ, Sabounchi P, et al. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high-throughput mammalian cell culture array. Lab Chip 2005;5(1):44-8
  • Lee PJ, Hung PJ, Rao VM, Lee LP. Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 2006;94(1):5-14
  • King KR, Wang S, Irimia D, et al. A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 2007;7(1):77-85
  • Wang Z, Kim MC, Marquez M, Thorsen T. High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 2007;7(6):740-5
  • Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip 2007;7:1696-704
  • Behravesh E, Emami K, Wu H, Gonda S. Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. Adv Space Res 2005;35(2):260-7
  • Camps J, About I, Thonneman B, et al. Two- versus three-dimensional in vitro differentiation of human pulp cells into odontoblastic cells. Connect Tissue Res 2002;43(2-3):396-400
  • Martin I, Suetterlin R, Baschong W, et al. Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 2001;83(1):121-8
  • Smitskamp-Wilms E, Pinedo HM, Veerman G, et al. Postconfluent multilayered cell line cultures for selective screening of gemcitabine. Eur J Cancer 1998;34(6):921-6
  • O'Connor KC. Three-dimensional cultures of prostatic cells: tissue models for the development of novel anticancer therapies. Pharm Res 1999;16(4):486-93
  • Haramaki M. Morphological and biological changes of a hepatocellular carcinoma cell line cultured in a three-dimensional matrix of collagen. Acta Pathologica Japonica 1993;43(9):490-9
  • Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 2002;14(5):633-9
  • Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro-a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 2005;15(5):405-12
  • Zahir N, Weaver VM. Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 2004;14(1):71-80
  • Poland J, Sinha P, Siegert A, et al. Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture. Electrophoresis 2002;23:1174-84
  • Pei M, Solchaga LA, Seidel J, et al. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 2002;16(12):1691-4
  • Domansky K, Inman W, Serdy J, Griffith L. Perfused microreactors for liver tissue engineering. Conf Proc IEEE Eng Med Biol Soc 2005;7:7490-2
  • Frisk T, Rydholm S, Andersson H, et al. A concept for miniaturized 3-D cell culture using an extracellular matrix gel. Electrophoresis 2005;26(24):4751-8
  • Frisk T, Rydholm S, Liebmann T, et al. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 2007;28(24):4705-12
  • Koh WG, Pishko MV. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 2006;385(8):1389-97
  • Paguirigan A, Beebe DJ. Gelatin based microfluidic devices for cell culture. Lab Chip 2006;6(3):407-13
  • Khademhosseini A, Eng G, Yeh J, et al. Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 2007;9(2):149-57
  • Kim MS, Yeon JH, Park JK. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 2007;9(1):25-34
  • Zguris JC, Itle LJ, Koh WG, Pishko MV. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells. Langmuir 2005;21:4168-74
  • Simms H, Bowman C, Anseth K. Using living radical polymerization to enable facile incorporation of materials in microfluidic cell culture devices. Biomaterials 2008;29:2228-36
  • Wu MH, Huang SB, Cui ZF, et al. Development of perfusion-based micro 3-D cell culture platform and its application for high-throughput drug testing. Sens Actu B 2008;129:231-40
  • Wu MH, Huang SB, Cui Z, et al. A high-throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomed Microdevices 2008;10(2):309-19
  • Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip 2007;7(6):756-62
  • Braschler T, Johann R, Heule M, et al. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip 2005;5(5):553-9
  • Choi CH, Jung JH, Rhee YW, et al. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 2007;9(6):855-62
  • Kim JY, Park H, Kwon KH, et al. A cell culturing system that integrates the cell loading function on a single platform and evaluation of the pulsatile pumping effect on cells. Biomed Microdevices 2008;10(1):11-20
  • Lee PJ, Gaige TA, Ghorashian N, Hung PJ. Microfluidic tissue model for live cell screening. Biotechnol Prog 2007;23(4):946-51
  • Park JY, Hwang CM, Lee SH, Lee SH. Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip 2007;7(12):1673-80
  • Jang K, Sato K, Igawa K, et al. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Anal Bioanal Chem 2008;390:825-32
  • Sivaraman A, Leach JK, Townsend S, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005;6(6):569-91
  • Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 2007;7(3):302-9
  • Zhang X. 3-D cell-based high-throughput screening for drug discovery and cell culture process development. Columbus, OH: The Ohio State University; 2008
  • Williams V, Kashanin D, Shvets IV, et al. Microfluidic enabling platform for cell-based assays. JALA 2002;7(6):135-41
  • Genes LI, N VT, Hulvey MK, et al. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab Chip 2007;7(10):1256-9
  • Madou M, Zoval J, Jia G, et al. Lab on a CD. Ann Rev Biomed Eng 2006;8:601-28
  • Lee LJ, Yang ST, Lai S, et al. Microfluidic enzyme-linked immunosorbent assay technology. Adv Clin Chem 2006;42:255-95
  • Lai S, Wang S, Luo J, et al. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 2004;76(7):1832-7
  • Herr AE, Hatch AV, Throckmorton DJ, et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci USA 2007;104(13):5268-73
  • Klostranec JM, Xiang Q, Farcas GA, et al. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 2007;7(9):2812-8
  • Murphy BM, He X, Dandy D, Henry CS. Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. Anal Chem 2008;80(2):444-50
  • Lee KH, Su YD, Chen SJ, et al. Microfluidic systems integrated with two-dimensional surface plasmon resonance Phase Imaging systems for microarray immunoassay. Biosens Bioelectron 2007;23(4):466-72
  • Wang ZH, Meng YH, Ying PQ, et al. A label-free protein microfluidic array for parallel immunoassays. Electrophoresis 2006;27(20):4078-85
  • Kaigala GV, Hoang VN, Stickel A, et al. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 2008;133(3):331-8
  • Yager P, Edwards T, Fu E, et al. Microfluidic diagnostic technologies for global public health. Nature 2006;442(7101):412-8
  • Linder V. Microfluidics at the crossroad with point-of-care diagnostics. Analyst 2007;132(12):1186-92
  • Kumar L, Amin A, Bansal AK. An overview of automated systems relevant in pharmaceutical salt screening. Drug Discov Today 2007;12(23-24):1046-53
  • Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev 2007;6(3):231-48
  • Joanicot M, Ajdari A. Applied physics. Droplet control for microfluidics. Science 2005;309(5736):887-8
  • Kim H, Luo D, Link D, et al. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett 2007;91:133106
  • Tan YC, Lee AP. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system. Lab Chip 2005;5(10):1178-83
  • Okushima S, Nisisako T, Torii T, Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 2004;20(23):9905-8
  • Utada AS, Lorenceau E, Link DR, et al. Monodisperse double emulsions generated from a microcapillary device. New York, NY. Science 2005;308(5721):537-41
  • Huang S, Tan W, Tseng F, Takeuchi S. A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic Systems. J Micromech Microeng 2006;16:2336-44
  • Chang F, Su Y. Controlled double emulsification utilizing 3D PDMS microchannels. J Micromech Microeng 2008;18:065018
  • Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev 2008;7(1):21-39
  • Zhang Z, Szita N, Boccazzi P, et al. A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 2006;93(2):286-96
  • Zhang Z, Perozziello G, Boccazzi P, et al. Microbioreactors for bioprocess development. JALA 2007;12:143-51
  • Zhang Z, Boccazzi P, Choi HG, et al. Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 2006;6(7):906-13
  • Zanzotto A, Szita N, Boccazzi P, et al. Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 2004;87(2):243-54
  • Szita N, Boccazzi P, Zhang Z, et al. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 2005;5(8):819-26
  • Maharbiz MM, Holtz WJ, Howe RT, Keasling JD. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 2004;86(4):485-90
  • Lee HL, Boccazzi P, Ram RJ, Sinskey AJ. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 2006;6(9):1229-35
  • Harms P, Kostov Y, French JA, et al. Design and performance of a 24-station high-throughput microbioreactor. Biotechnol Bioeng 2005;93(1):6-13
  • Boccazzi P, Zhang Z, Kurosawa K, et al. Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 2006;22(3):710-7
  • Akay G, Erhan E, Keskinler B. Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria. Biotechnol Bioeng 2005;90(2):180-90
  • Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 2005;102(13):4783-8
  • Malda J, Martens DE, Tramper J, ett al. Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 2003;23(3):175-94
  • Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004;5(9 Suppl):10-7
  • Zaari N, Rajagopalan P, Kim SK, et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 2004;16:2133-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.