107
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Towards microfluidic technology-based MALDI-MS platforms for drug discovery: a review

, MChem PhD, , BSc MSc PhD MRSC, , BA DPhil FRSC & , BSc MSc PhD MRSC
Pages 1281-1292 | Published online: 22 Oct 2008

Bibliography

  • Oliver von Ahsen UB. High-Throughput Screening for Kinase Inhibitors. Chem Bio Chem 2005;6(3):481-90
  • Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical 1990;1(1-6):244-8
  • Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 2002;74(12):2637-52
  • Vilkner T, Janasek D, Manz A. Micro total analysis systems. Recent developments. Anal Chem 2004;76(12):3373-85
  • Hatch A, Kamholz AE, Hawkins KR, et al. A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 2001;19(5):461-5
  • Macounova K, Cabrera CR, Holl MR, Yager P. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem 2000;72(16):3745-51
  • Liu Y, Xue Y, Ji J, et al. Gold Nanoparticle Assembly Microfluidic Reactor for Efficient On-line Proteolysis. Mol Cell Proteomics 2007;6(8):1428-36
  • Hou CSC-SJ, Milovic NN, Godin MM, et al. Label-free microelectronic PCR quantification. Anal chem 2006;78(8):2526-31
  • Hadd AG, Raymond DE, Halliwell JW, et al. Microchip device for performing enzyme assays. Anal Chem 1997;69(17):3407-12
  • Hadd AG, Jacobson SC, Ramsey JM. Microfluidic assays of acetylcholinesterase inhibitors. Anal Chem 1999;71(22):5206-12
  • Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors and Actuators B: Chemical 2001;72(2):129-33
  • Cheng SB, Skinner CD, Taylor J, et al. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal Chem 2001;73(7):1472-9
  • Yang TL, Jung SY, Mao HB, Cremer PS. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal Chem 2001;73(2):165-9
  • Sohn LL, Saleh OA, Facer GR, et al. Capacitance cytometry: measuring biological cells one by one. Proc Natl Acad Sci USA 2000;97(20):10687-90
  • Figeys D, Gygi SP, McKinnon G, Aebersold R. An Integrated Microfluidics-Tandem Mass Spectrometry System for Automated Protein Analysis. Anal Chem 1998;70(18):3728-34
  • Jiang Y, Wang PC, Locascio LE, Lee CS. Integrated Plastic Microfluidic Devices with ESI-MS for Drug Screening and Residue Analysis. Anal Chem 2001;73(9):2048-53
  • Gao J, Xu J, Locascio LE, Lee CS. Integrated Microfluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification. Anal Chem 2001;73(11):2648-55
  • Belgrader P, Okuzumi M, Pourahmadi F, et al. A microfluidic cartridge to prepare spores for PCR analysis. Biosens Bioelectron 2000;14(10-11):849-52
  • Khandurina J, McKnight TE, Jacobson SC, et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 2000;72(13):2995-3000
  • Lagally ET, Medintz I, Mathies RA. Single-Molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 2001;73(3):565-70
  • Buchholz BA, Doherty EAS, Albarghouthi MN, et al. Microchannel DNA Sequencing Matrices with a Thermally Controlled “Viscosity Switch”. Anal Chem 2001;73(2):157-64
  • Fan ZH, Mangru S, Granzow R, et al. Dynamic DNA hybridization on a chip using paramagnetic beads. Anal Chem 1999;71(21):4851-9
  • Koutny L, Schmalzing D, Salas-Solano O, et al. Eight hundred-base sequencing in a microfabricated electrophoretic device. Anal Chem 2000;72(14):3388-91
  • Lee G-B, Chen S-H, Huang G-R, et al. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sensors and Actuators B: Chemical 2001;75(1-2):142-8
  • Glasgow IK, Zeringue HC, Beebe DJ, et al. Handling individual mammalian embryos using microfluidics. IEEE Trans Biomed Eng 2001;48(5):570-8
  • Yang J, Huang Y, Wang XB, et al. Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 1999;71(5):911-8
  • Folch A, Jo B-H, Hurtado O, et al. Microfabricated Elastomeric Stencils for Micropatterning Cell Cultures. J Biomed Mater Res 2000;52(2):346-7
  • Weigl BH, Yager P. MICROFLUIDICS:Microfluidic diffusion-based separation and detection. Science 1999;283(5400):346-7
  • Cunningham DD. Fluidics and sample handling in clinical chemical analysis. Anal Chim Acta 2001;429:1-8
  • Balagadde FK, You L, Hansen CL, et al. Long-Term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309(5731):137-40
  • Drews J. Genomic sciences and the medicine of tomorrow. Nat Biotechnol 1996;14(11):1516-8
  • Mario Geysen H, Schoenen F, Wagner D, Wagner R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Rev Drug Discov 2003;2(3):222-30
  • Dittrich PS, Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 2006;5(3):210-8
  • Kikutani Y, Horiuchi T, Uchiyama K, et al. Glass microchip with three dimensional microchannel network for 2X2 parallel synthesis. Lab Chip 2002;2(4):188-92
  • Garcia-Egido E, Spikmans V, Wong SYF, Warrington BH. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system Lab Chip 2003;3(2):73-6
  • Bergh S, Cong P, Ehnebuske B, et al. Combinatorial Heterogeneous Catalysis: Oxidative Dehydrogenation of Ethane to Ethylene, Selective Oxidation of Ethane to Acetic Acid, and Selective Ammoxidation of Propane to Acrylonitrile. Topics in Catalysis 2003;23:65-79
  • Song H, Bringer MR, Tice JD, et al. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 2003;83(22):4664-6
  • Song H, Tice JD, Ismagilov RF. A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 2003;42(7):768-72
  • Zheng B, Tice JD, Ismagilov RF. Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays. Anal Chem 2004;76(17):4977-82
  • Song H, Ismagilov RF. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 2003;125(47):14613-9
  • Ricco AJ, Boone TD, Fan ZH, et al. Application of disposable plastic microfluidic device arrays with customized chemistries to multiplexed biochemical assays. Biochem Soc Trans 2002;30:73-8
  • Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotech 1998;16(7):652-6
  • Aharoni A, Griffiths AD, Tawfik DS. High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 2005;9(2):210-6
  • Tan YC, Hettiarachchi K, Siu M, et al. Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles. J Am Chem Soc 2006;128(17):5656-8
  • He M, Edgar JS, Jeffries GDM, et al. Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets. Anal Chem 2005;77(6):1539-44
  • Chiu DT, Wilson CF, Rytts, et al. Chemical Transformations in Individual Ultrasmall Biomimetic Containers. Science 1999;283(5409):1892-5
  • Kuhn P, Wilson K, Patch MG, Stevens RC. The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr Opin Chem Biol 2002;6(5):704-10
  • Huang Y, Castrataro P, Lee C-C, Quake SR. Solvent resistant microfluidic DNA synthesizer. Lab Chip 2007;7(1):24-6
  • Zguris JCJC. Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolite studies. Biomed microdevices 2005;7(2):117-25
  • Koh W-G, Pishko M. Immobilization of multi-enzyme microreactors inside microfluidic devices. Sensors and Actuators B: Chemical 2005;106(1):335-42
  • Greis KD, Zhou S, Burt TM, et al. MALDI-TOF MS as a label-free approach to rapid inhibitor screening. J Am Soc Mass Spectr 2006;17(6):815-22
  • De Boer AR, Lingeman H, Niessen WMA, Irth H. Mass spectrometry-based biochemical assays for enzyme inhibitor screening. Trends Anal Chem 2007;26(9):867-83
  • Greis KD. Mass spectrometry for enzyme assays and inhibitor screening: An emerging application in pharmaceutical research. Mass Spectrom Rev 2007;26(3):324-39
  • Annis DA, Nickbarg E, Yang X, et al. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol 2007;11(5):518-26
  • Forbes CD, Toth JG, Ozbal CC, et al. High-Throughput Mass Spectrometry Screening for Inhibitors of Phosphatidylserine Decarboxylase. J Biomol Screen 2007;12(5):628-34
  • Nazabal A, Wenzel RJ, Zenobi R. Immunoassays with direct mass spectrometric detection. Anal Chem 2006;78(11):3562-70
  • Yanes O, Villanueva J, Querol E, Aviles FX. Intensity-fading MALDI-TOF-MS: novel screening for ligand binding and drug discovery. Drug Discov Today Targets 2004;3(2 Suppl 1):23-30
  • Villanueva J, Yanes O, Querol E, et al. Identification of protein ligands in complex biological samples using intensity-fading MALDI-TOF Mass Spectrometry. Anal Chem 2003;75(14):3385-95
  • Yanes O, Villanueva J, Querol E, Aviles FX. Functional screening of serine protease inhibitors in the medical leech hirudo medicinalis monitored by intensity fading MALDI-TOF MS. Mol Cell Proteomics 2005;4(10):1602-13
  • Gary Siuzdak JKL. Applications of mass spectrometry in combinatorial chemistry. Biotechnol Bioeng 1998;61(2):127-34
  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 2001;7(4):493-6
  • Norris JL, Cornett DS, Mobley JA, et al. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom 2007;260(2-3):212-21
  • Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV. Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov Today 2005;10(12):823-37
  • Orgorzalek L, Mitchell C, Stevenson TI, et al. Sensitivity and mass accuracy for proteins analyzed directly from polyacrylamide gels: Implications for proteome mapping. Electrophoresis 1997;18(3-4):382-90
  • O'Connor PB, Budnik BA, Ivleva VB, et al. A high pressure matrix-assisted laser desorption ion source for Fourier transform mass spectrometry designed to accommodate large targets with diverse surfaces. J Am Soc Mass Spectr 2004;15(1):128-32
  • Ivleva VB, Elkin YN, Budnik BA, et al. Coupling Thin-Layer Chromatography with Vibrational Cooling Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry for the Analysis of Ganglioside Mixtures. Anal Chem 2004;76(21):6484-91
  • Dreisewerd K, Muthing J, Rohlfing A, et al. Analysis of Gangliosides Directly from Thin-Layer Chromatography Plates by Infrared Matrix-Assisted Laser Desorption/Ionization Orthogonal Time-of-Flight Mass Spectrometry with a Glycerol Matrix. Anal Chem 2005;77(13):4098-107
  • Michelle Baltz-Knorr Drekesrfh Jr. Infrared laser desorption and ionization of polypeptides from a polyacrylamide gel. J Mass Spectrom 2002;37(3):254-8
  • Menzel C, Dreisewerd K, Berkenkamp S, Hillenkamp F. Mechanisms of energy deposition in infrared matrix-assisted laser desorption/ionization mass spectrometry. International J Mass Spectrom 2001;207:73-96
  • Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis. Anal chem 1992;64(18):2149-54
  • Franti?ek Foret PK. Microfluidics for multiplexed MS analysis. Electrophoresis 2006;27(24):4877-87
  • Iulia M, Lazar JGFF. Microfabricated devices: A new sample introduction approach to mass spectrometry. Mass Spectrom Rev 2006;25(4):573-94
  • DeVoe DL, Lee CS. Microfluidic technologies for MALDI-MS in proteomics. Electrophoresis 2006;27(18):3559-68
  • Freire SLS, Wheeler AR. Proteome-on-a-chip: Mirage, or on the horizon? Lab Chip 2006;6(11):1415-23
  • Hui-Ling W, Peng-Yuan Y, Guo-Rong F, et al. Sol-gel-derived Poly(dimethylsiloxane) Enzymatic Reactor for Microfluidic Peptide Mapping. Chinese J Chem 2006;24(7):903-9
  • Wang YX, Zhou Y, Balgley BM, et al. Electrospray interfacing of polymer microfluidics to MALDI-MS. Electrophoresis 2005;26(19):3631-40
  • Liu J, Tseng K, Garcia B, et al. Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS. Anal Chem 2001;73(9):2147-51
  • Lars Wallman SEGM-VTLJN. Autonomous protein sample processing on-chip using solid-phase microextraction, capillary force pumping, and microdispensing. Electrophoresis 2004;25(21-22):3778-87
  • Gustafsson M, Hirschberg D, Palmberg C, et al. Integrated Sample Preparation and MALDI Mass Spectrometry on a microfluidic compact disk. Anal Chem 2004;76(2):345-50
  • Wheeler AR, Moon H, Kim CJ, et al. Electrowetting-based microfluidics for analysis of peptides and proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2004;76(16):4833-8
  • Wheeler AR, Moon H, Bird CA, et al. Digital microfluidics with in-line sample Purification for proteomics analyses with MALDI-MS. Anal Chem 2005;77(2):534-40
  • Brivio M, Fokkens RH, Verboom W, et al. Integrated microfluidic system enabling (bio)chemical reactions with on-line MALDI-TOF mass spectrometry. Anal Chem 2002;74(16):3972-6
  • Brivio M, Tas NR, Goedbloed MH, et al. A MALDI-chip integrated system with a monitoring window. Lab Chip 2005;5(4):378-81
  • Harrison K, Musyimi, Damien JG, et al. Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet. Electrophoresis 2005;26(24):4703-10
  • Xu Y, Little MW, Murray KK. Interfacing Capillary Gel Microfluidic Chips with Infrared Laser Desorption Mass Spectrometry. J Am Soc Mass Spectr 2006;17(3):469-74
  • Lee SS-H. An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry. Biomed microdevices 2008;10(1):1-9
  • Ekström S, Wallman L, Helldin G, et al. Polymeric integrated selective enrichment target (ISET) for solid-phase-based sample preparation in MALDI-TOF MS. J Mass Spectrom 2007;42(11):1445-52
  • Hsieh F, Keshishian H, Muir C. Automated high throughput multiple target screening of molecular libraries by microfluidic MALDI-TOF MS. J Biomol Screen 1998;3(3):189-98
  • Lee J, Musyimi HK, Soper SA, Murray KK. Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS. J Am Soc Mass Spectr 2008;19(7):964-72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.